【題目】如圖,△ABC是等邊三角形,BD平分∠ABC,延長BC到E,使得CE=CD. 求證:BD=DE.

【答案】證明:∵△ABC是等邊三角形,BD是中線, ∴∠ABC=∠ACB=60°.
∠DBC=30°(等腰三角形三線合一).
又∵CE=CD,
∴∠CDE=∠CED.
又∵∠BCD=∠CDE+∠CED,
∴∠CDE=∠CED= ∠BCD=30°.
∴∠DBC=∠DEC.
∴DB=DE(等角對等邊)
【解析】根據(jù)等邊三角形的性質(zhì)得到∠ABC=∠ACB=60°,∠DBC=30°,再根據(jù)角之間的關系求得∠DBC=∠CED,根據(jù)等角對等邊即可得到DB=DE.
【考點精析】根據(jù)題目的已知條件,利用等邊三角形的性質(zhì)的相關知識可以得到問題的答案,需要掌握等邊三角形的三個角都相等并且每個角都是60°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】實踐操作如圖,∠△ABC是直角三角形,∠ACB=90,利用直尺和圓規(guī)按下列要求作圖,并在圖中標明相應的字母.(保留作圖痕跡,不寫作法)

①作∠BAC的平分線,交BC于點0

②以點0為圓心,OC為半徑作圓.綜合運用在你所作的圖中,

(1)直線AB與⊙0的位置關系是

(2)證明:BA·BD=BC·BO;

(3)若AC=5,BC=12,求⊙0的半徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市在高架快速公路施工期間,交管部門在施工路段設立了矩形路況警示牌BCEF(如圖所示),已知立桿AB的高度是3米,從側(cè)面D點測到路況警示牌頂端C點和底端B點的仰角分別是60°45°,求路況警示牌寬BC的值(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點(m,n)在函數(shù)y=2x+1的圖象上,則2m﹣n的值是( )
A.2
B.﹣2
C.1
D.﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請從以下兩個小題中任選一個作答,若多選,則按第一題計分.

A.一個八邊形的外角和是___度.

B.計劃在樓層間修建一個坡角為35°的樓梯,若樓層間高度為2.7m,為了節(jié)省成本,現(xiàn)要將樓梯坡角增加11°,則樓梯的斜面長度約減少__m.(用科學計算器計算,結(jié)果精確到0.01m)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知太陽的半徑約為696000000m,696000000這個數(shù)用科學記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)定義運算對于任意有理數(shù)ab,都有ababb,232×33,請根據(jù)以上定義解答下列各題

1 2(-3)=___________,x(-2)=___________;

2 化簡[(-x3] (-2);

3 x 3(-x),x的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形一腰上的高與另一邊的夾角為80°,則頂角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由于空氣污染,氣候干旱等因素,今年流感大肆流行,根據(jù)山東省衛(wèi)計委統(tǒng)計,截止20181月,本年度全省共報告流感樣病例442000例,其中014歲年齡組占到總病例數(shù)的88.09%,用科學記數(shù)法表示數(shù)字442000是( 。

A. 4.42×103 B. 442×103 C. 4.42×105 D. 442×105

查看答案和解析>>

同步練習冊答案