【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC與BD交于點(diǎn)O,且AC=80,BD=60.動(dòng)點(diǎn)M,N分別以每秒1個(gè)單位的速度從點(diǎn)A,D同時(shí)出發(fā),分別沿A→O→D和D→A運(yùn)動(dòng),當(dāng)點(diǎn)N到達(dá)點(diǎn)A時(shí),M,N同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求菱形ABCD的周長(zhǎng).
(2)設(shè)△DMN的面積為S,求S關(guān)于t的解析式,并求S的最大值(提示:需分兩種情況討論).
【答案】
(1)
解:在菱形ABCD中,
∵四邊形ABCD是菱形,對(duì)角線AC與BD交于點(diǎn)O,且AC=80,BD=60,
∴OA=40,OD=30,
∵AC⊥BD,
∴AD= =50.
∴菱形ABCD的周長(zhǎng)為200
(2)
解:過(guò)點(diǎn)M作MP⊥AD,垂足為點(diǎn)P.
①當(dāng)0<t≤40時(shí),如圖1,
∵ ,
∴MP=AMsin∠OAD= .
∴ .
∵S隨t的增大而增大,
∴當(dāng)t=40時(shí),最大值為480;
②當(dāng)40<t≤50時(shí),如圖2,
∴MD=80﹣t.
∵ ,
∴MP= .
∴ = = = +490.
∵S隨t的增大而減小,
∴當(dāng)t=40時(shí),最大值為480.
綜上所述,S的最大值為480
【解析】(1)根據(jù)勾股定理及菱形的性質(zhì),求出菱形的周長(zhǎng);(2)在動(dòng)點(diǎn)M、N運(yùn)動(dòng)過(guò)程中:①當(dāng)0<t≤40時(shí),如答圖1所示,②當(dāng)40<t≤50時(shí),如答圖2所示.分別求出S的關(guān)系式,然后利用二次函數(shù)的性質(zhì)求出最大值.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減。粚(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將四邊形ABCD稱(chēng)為“基本圖形”,且各點(diǎn)的坐標(biāo)分別為A(4,4),B(1,3),C(3,3),D(3,1).
①畫(huà)出“基本圖形”關(guān)于原點(diǎn)O對(duì)稱(chēng)的四邊形A1B1C1D1 , 并填出A1 , B1 , C1 , D1的坐標(biāo);
②畫(huà)出“基本圖形”繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°所成的四邊形A2B2C2D2
A1( , )B1( , )
C1( , )D1( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定一列數(shù),我們把這列數(shù)中的第一個(gè)數(shù)記為a1,第二個(gè)數(shù)記為a2,第三個(gè)數(shù)記為a3,依此類(lèi)推,第n個(gè)數(shù)記為an(n為正整數(shù)),如下面這列數(shù)2,4,6,8,10中,a1=2,a2=4,a3=6,a4=8,a5=10.規(guī)定運(yùn)算sum(a1:an)=a1+a2+a3+…+an.即從這列數(shù)的第一個(gè)數(shù)開(kāi)始依次加到第n個(gè)數(shù),如在上面的一列數(shù)中,sum(a1:a3)=2+4+6=12.
(1)已知一列數(shù)1,﹣2,3,﹣4,5,﹣6,7,﹣8,9,﹣10,求a3,sum(a1:a10)的值.
(2)已知這列數(shù)1,﹣2,3,﹣4,5,﹣6,7,﹣8,9,﹣10,…,按照規(guī)律可以無(wú)限寫(xiě)下去,求a2018,sum(a1:a2018)的值.
(3)在(2)的條件下否存在正整數(shù)n使等式|sum(a1:an)|=50成立?如果有,寫(xiě)出n的值,如果沒(méi)有,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】受地震的影響,某超市雞蛋供應(yīng)緊張,需每天從外地調(diào)運(yùn)雞蛋1200斤.超市決定從甲、乙兩大型養(yǎng)殖場(chǎng)調(diào)運(yùn)雞蛋,已知甲養(yǎng)殖場(chǎng)每天最多可調(diào)出800斤,乙養(yǎng)殖場(chǎng)每天最多可調(diào)出900斤,從兩養(yǎng)殖場(chǎng)調(diào)運(yùn)雞蛋到超市的路程和運(yùn)費(fèi)如表:
到超市的路程(千米) | 運(yùn)費(fèi)(元/斤千米) | |
甲養(yǎng)殖場(chǎng) | 200 | 0.012 |
乙養(yǎng)殖場(chǎng) | 140 | 0.015 |
(1)若某天調(diào)運(yùn)雞蛋的總運(yùn)費(fèi)為2670元,則從甲、乙兩養(yǎng)殖場(chǎng)各調(diào)運(yùn)了多少斤雞蛋?
(2)設(shè)從甲養(yǎng)殖場(chǎng)調(diào)運(yùn)雞蛋x斤,總運(yùn)費(fèi)為W元,試寫(xiě)出W與x的函數(shù)關(guān)系式,怎樣安排調(diào)運(yùn)方案才能使每天的總運(yùn)費(fèi)最?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組10名學(xué)生在一次數(shù)學(xué)測(cè)試中的成績(jī)?nèi)绫恚M(mǎn)分150分)
分?jǐn)?shù)(單位:分) | 105 | 130 | 140 | 150 |
人數(shù)(單位:人) | 2 | 4 | 3 | 1 |
下列說(shuō)法中,不正確的是( )
A.這組數(shù)據(jù)的眾數(shù)是130
B.這組數(shù)據(jù)的中位數(shù)是130
C.這組數(shù)據(jù)的平均數(shù)是130
D.這組數(shù)據(jù)的方差是112.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將長(zhǎng)方形ABCD對(duì)折,得折痕PQ,展開(kāi)后再沿MN翻折,使點(diǎn)C恰好落在折痕PQ上的點(diǎn)C′處,點(diǎn)D落在D′處,其中M是BC的中點(diǎn)且MN與折痕PQ交于F.連接AC′,BC′,則圖中共有等腰三角形的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線C1:y=x2+bx+c經(jīng)過(guò)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為(2,0),將拋物線C1向右平移m(m>0)個(gè)單位得到拋物線C2 , C2交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),交y軸于點(diǎn)C.
(1)求拋物線C1的解析式及頂點(diǎn)坐標(biāo);
(2)以AC為斜邊向上作等腰直角三角形ACD,當(dāng)點(diǎn)D落在拋物線C2的對(duì)稱(chēng)軸上時(shí),求拋物線C2的解析式;
(3)若拋物線C2的對(duì)稱(chēng)軸存在點(diǎn)P,使△PAC為等邊三角形,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com