【閱讀】

在平面直角坐標系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標為(,).

【運用】

⑴如圖,矩形ONEF的對角線交于點M,ON、OF分別在x軸和y軸上,O為坐標原點,點E的坐標為(4,3),則點M的坐標為______;

⑵在直角坐標系中,有A(-1,2),B(3,1),C(1,4)三點,另有一點D與點A、B、C構成平行四邊形的頂點,求點D的坐標.

 

 

 

【答案】

解:⑴∵四邊形ONEF是矩形,     ∴點M是OE的中點.

      ∵O(0,0),E(4,3),    ∴點M的坐標為(2,).

 ⑵點D的坐標為(1,-1)或(5,3)或(-3,5)

【解析】(1)根據(jù)矩形的對角線互相平分及點E的坐標即可得出答案.

(2)根據(jù)題意畫出圖形,然后可找到點D的坐標.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•鎮(zhèn)江)【閱讀】
如圖1,在平面直角坐標系xOy中,已知點A(a,0)(a>0),B(2,3),C(0,3).過原點O作直線l,使它經(jīng)過第一、三象限,直線l與y軸的正半軸所成角設為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點C落在點D處,我們把這個操作過程記為FZ[θ,a].
【理解】
若點D與點A重合,則這個操作過程為FZ[
45°
45°
,
3
3
];
【嘗試】
(1)若點D恰為AB的中點(如圖2),求θ;
(2)經(jīng)過FZ[45°,a]操作,點B落在點E處,若點E在四邊形0ABC的邊AB上,求出a的值;若點E落在四邊形0ABC的外部,直接寫出a的取值范圍;
【探究】
經(jīng)過FZ[θ,a]操作后,作直線CD交x軸于點G,交直線AB于點H,使得△ODG與△GAH是一對相似的等腰三角形,直接寫出FZ[θ,a].

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省興化市四校八年級上學期第三次月考數(shù)學試卷(帶解析) 題型:解答題

【閱讀】
在平面直角坐標系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標為(,).
【運用】
⑴如圖,矩形ONEF的對角線交于點M,ON、OF分別在x軸和y軸上,O為坐標原點,點E的坐標為(4,3),則點M的坐標為______;
⑵在直角坐標系中,有A(-1,2),B(3,1),C(1,4)三點,另有一點D與點A、B、C構成平行四邊形的頂點,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇期末題 題型:解答題

【閱讀理解】
在平面直角坐標系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標為()。
【運用知識解決問題】
(1)如圖,矩形ONEF的對角線交于點M,ON、OF分別在x軸和y軸上,O為坐標原點,點E的坐標為(4,3),求點M的坐標;
(2)在直角坐標系中,有A(-1,2),B(3,1),C(1,4)三點,另有一點D與點A、B、C構成平行四邊形的頂點,求點D的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:解答題

【閱讀】
在平面直角坐標系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標為 () .
【運用】
(1)如圖,矩形ONEF的對角線交于點M,ON、OF分別在x鈾和y軸上,O為坐標原點,點E的坐標為(4,3),則點M的坐標為          ;
(2)在直角坐標系中,有A(﹣1,2),B(3,1),C(1,4)三點,另有一點D與點A、B、C構成平行四邊形的頂點.求點D的坐標.

查看答案和解析>>

同步練習冊答案