精英家教網 > 初中數學 > 題目詳情

【題目】研究問題:一個不透明的盒中裝有若干個只有顏色不一樣的紅球與黃球,怎樣估算不同顏色球的數量? 操作方法:先從盒中摸出8個球,畫上記號放回盒中,再進行摸球實驗,摸球實驗的要求:先攪拌均勻,每次摸出一個球,放回盒中,再繼續(xù).
活動結果:摸球實驗活動一共做了50次,統(tǒng)計結果如下表:

球的顏色

無記號

有記號

紅色

黃色

紅色

黃色

摸到的次數

18

28

2

2

推測計算:由上述的摸球實驗可推算:
(1)盒中紅球、黃球各占總球數的百分比分別是多少?
(2)盒中有紅球多少個?

【答案】
(1)解:由題意可知,50次摸球實驗活動中,出現紅球20次,黃球30次,

∴紅球所占百分比為20÷50=40%,

黃球所占百分比為30÷50=60%,

答:紅球占40%,黃球占60%


(2)解:由題意可知,50次摸球實驗活動中,出現有記號的球4次,

∴總球數為8÷ =100,

∴紅球數為100×40%=40,

答:盒中紅球有40個


【解析】(1)根據表格數據可以得到50次摸球實驗活動中,出現紅球20次,黃球30次,由此即可求出盒中紅球、黃球各占總球數的百分比;(2)由題意可知50次摸球實驗活動中,出現有記號的球4次,由此可以求出總球數,然后利用(1)的結論即可求出盒中紅球.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】小敏從A地出發(fā)向B地行走,同時小聰從B地出發(fā)向A地行走,如圖所示,相交于點P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時間x(h)之間的關系,則小敏、小聰行走的速度分別是(
A.3km/h和4km/h
B.3km/h和3km/h
C.4km/h和4km/h
D.4km/h和3km/h

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖EFAD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整

EFAD,(   

∴∠2=   .(兩直線平行,同位角相等

又∵∠1=∠2,(   

∴∠1=∠3.(   

ABDG.(   

∴∠BAC+   =180°(   

又∵∠BAC=70°,(   

∴∠AGD   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一自助夏令營活動中,小明同學從營地A出發(fā),要到A地的北偏東60°方向的C處,他先沿正東方向走了200m到達B地,再沿北偏東30°方向走,恰能到達目的地C(如圖),那么,由此可知,B、C兩地相距 m.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠CAB+∠ABC=90°,AD平分∠CAB,與BC邊交于點D,BE平分∠ABC與AC邊交于點E。

(1)依題意補全圖形,并猜想∠DAB+∠EBA的度數等于__________;

(2)證明以上結論。

證明:∵ AD平分∠CAB,BE平分∠ABC,

∴∠DAB=∠CAB,

∠EBA=__________.

(理由:____________________

∵∠CAB+∠ABC=90°,

∴∠DAB+∠EBA=______×(∠______+∠______)=______。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知兩直線l1 , l2分別經過點A(1,0),點B(﹣3,0),并且當兩直線同時相交于y正半軸的點C時,恰好有l(wèi)1⊥l2 , 經過點A、B、C的拋物線的對稱軸與直線l1交于點K,如圖所示.

(1)求點C的坐標,并求出拋物線的函數解析式;
(2)拋物線的對稱軸被直線l1 , 拋物線,直線l2和x軸依次截得三條線段,問這三條線段有何數量關系?請說明理由;
(3)當直線l2繞點C旋轉時,與拋物線的另一個交點為M,請找出使△MCK為等腰三角形的點M,簡述理由,并寫出點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC,AD是角平分線B=54°,C=76°.

(1)求∠ADB和∠ADC的度數

(2)DEAC,求∠EDC的度數

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算

(1)27﹣16+(﹣7)﹣18;

(2)(﹣6)×(﹣)÷(﹣);

(3)()×60;

(4)﹣24+3×(﹣1)4﹣(﹣2)3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知函數y =(2m+1) x+ m-3

(1) 若函數圖象經過原點,m的值.

(2) 若函數圖象在y軸的交點的縱坐標為-2,求m的值.

(3)若函數的圖象平行直線y=-3x–3,求m的值.

(4)若這個函數是一次函數,y隨著x的增大而減小,m的取值范圍.

查看答案和解析>>

同步練習冊答案