【題目】如圖:已知線段a、b
(1)求作一個(gè)等腰△ABC,使底邊長BC=a,底邊上的高為b.(尺規(guī)作圖,只保留作圖痕跡)
(2)小明由此想到一個(gè)命題:等腰三角形底邊的中點(diǎn)到兩腰的距離相等,請你判斷這個(gè)命題的真假,如果是真命題請證明;如果是假命題請舉出反例.
【答案】(1)見解析;(2)真命題,證明見解析.
【解析】分析:(1)分別以B、C為圓心,大于BC為半徑畫弧,分別相交,作出BC的垂直平分線,再以D為圓心h長為半徑畫弧,交垂直平分線于點(diǎn)A,連接AB、AC即可.
(2)作出圖形,連接AD,由AB=AC,D為BC中點(diǎn),利用等腰三角形的“三線合一”性質(zhì)得到AD為頂角的平分線,由DE與AB垂直,DF與AC垂直,根據(jù)角平分線上的點(diǎn)到角兩邊的距離相等即可得到DE=DF,得證.
詳解:(1)如圖所示:
(2)真命題.已知:如圖,△ABC中,AB=AC,D為BC中點(diǎn),DE⊥AB于,ED⊥AC于F,
求證:DE=DF.
證明:連接AD,
∵AB=AC,D是BC中點(diǎn),
∴AD為∠BAC的角平分線(三線合一的性質(zhì)),
又∵DE⊥AB,DF⊥AC,
∴DE=DF(角平分線上的點(diǎn)到角的兩邊相等).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,勵(lì)志學(xué)習(xí)小組對有一內(nèi)角為120°的平行四邊形ABCD(∠BAD=120°)進(jìn)行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點(diǎn)始終與點(diǎn)C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點(diǎn)E,F(xiàn)(不包括線段的端點(diǎn)).
(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;
(2)類比發(fā)現(xiàn)
如圖2,若AD=2AB,過點(diǎn)C作CH⊥AD于點(diǎn)H,求證:AE=2FH;
在證明這道題時(shí),勵(lì)志學(xué)習(xí)小組成員小穎同學(xué)進(jìn)行如下書寫,請你將此證明過程補(bǔ)充完整
證明:設(shè)DH=x,由由題意,CD=2x,CH=x,
∴AD=2AB=4x,
∴AH=AD﹣DH=3x,
∵CH⊥AD,
∴AC==2x,
(3)深入探究
在(2)的條件下,勵(lì)志學(xué)習(xí)小組成員小漫同學(xué)探究發(fā)現(xiàn),試判斷小漫同學(xué)的結(jié)論是否正確,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與x軸交點(diǎn)A(1,0),B(-3,0) .與y軸交點(diǎn)B(0,3),如圖1所示,D為拋物線的頂點(diǎn)。
(1)求拋物線的解析式;
(2)如圖1若R為y軸上的一個(gè)動點(diǎn),連接AR,則RB+AR的最小值為
(3)在x軸上取一動點(diǎn)P(m,0),,過點(diǎn)P作x軸的垂線,分別交拋物線、CD、CB于點(diǎn)Q、F、E,如圖2所示,求證EF=EP.
(4)設(shè)此拋物線的對稱軸為直線MN,在直線MN上取一點(diǎn)T,使∠BTN=∠CTN.直接寫出點(diǎn)T的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,AE平分∠BAD,交BC于E,DE⊥AE,下列結(jié)論::①DE平分∠ADC;②E是BC的中點(diǎn);③AD=2CD;④梯形ADCE的面積與△ABE的面積比是3:1,其中正確的結(jié)論的個(gè)數(shù)有( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線AC的解析式為y=﹣x+1,直線AC交x軸于點(diǎn)C,交y軸于點(diǎn)A.
(1)若等邊△OBD的頂點(diǎn)D與點(diǎn)C重合,另一頂點(diǎn)B在第一象限內(nèi),直接寫出點(diǎn)B的坐標(biāo);
(2)過點(diǎn)B作x軸的垂線l,在l上是否存在一點(diǎn)P,使得△AOP的周長最?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)試在直線AC上求出到兩坐標(biāo)軸距離相等的所有點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題情境】如圖①,在△ABC中,AB=AC,點(diǎn)P為邊BC上的任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點(diǎn)C作CF⊥AB,垂足為F.求證:PD+PE=CF.
小麗給出的提示是:如圖②,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
請根據(jù)小麗的提示進(jìn)行證明.
【變式探究】如圖③,當(dāng)點(diǎn)P在BC延長線上時(shí),其余條件不變,試猜想PD、PE、CF三者之間的數(shù)量關(guān)系并證明.
【結(jié)論運(yùn)用】如圖④,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組要制作長方形和梯形兩種不同形狀的卡片,尺寸如圖所示(單位:cm).
(1)長方形卡片的面積是 cm2;若梯形卡片的下底是上底的3倍,則梯形卡片的面積是 cm2;
(2)在(1)的條件下,做5張長方形卡片比做3張?zhí)菪慰ㄆ嘤昧隙嗌倨椒嚼迕祝?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市正在開展“食品安全城市”創(chuàng)建活動,為了解學(xué)生對食品安全知識的了解情況,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果按照“A非常了解、B了解、C了解較少、D不了解”四類分別進(jìn)行統(tǒng)計(jì),并繪制了下列兩幅統(tǒng)計(jì)圖(不完整).請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了 名學(xué)生;
(2)扇形統(tǒng)計(jì)圖中D所在扇形的圓心角為 ;
(3)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校共有800名學(xué)生,請你估計(jì)對食品安全知識“非常了解”的學(xué)生的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com