【題目】如圖所示,點A, 0, B在同一條直線上,OD平分∠AOC, OE平分∠BOC.
(1)若∠B0D=160°,求∠BOE的度數(shù);
(2) 若∠COE比∠COD多60°.求∠COE的度數(shù).
【答案】(1)∠BOE=70°;(2)∠COE=75°.
【解析】
(1)利用角平分線的性質(zhì)求出∠DOE的度數(shù),再根據(jù)∠BOD=160°求∠BOE的度數(shù);
(2)根據(jù)∠COE比∠COD多60°可得∠COE =60°+∠COD,結合(1)∠COE+∠COD=90°,即可求出∠COE的度數(shù)
解:(1)如圖,因為OD是∠AOC的平分線,
所以∠COD=∠AOC,
又因為OE是∠BOC的平分線,
所以∠COE=∠BOC.
所以∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=90°,
因為∠BOD=160°,
所以∠BOE=∠BOD-∠DOE=160°-90°=70°.
(2)由(1)可知,∠DOE=90°.
因為∠COE比∠COD多60°,
所以∠COE =60°+∠COD,
因為∠COE+∠COD=90°,
所以60°+∠COD +∠COD=90°
即∠COD=15°,∠COE=75°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小山的頂部是一塊平地,在這塊平地上有一高壓輸電的鐵架,小山的斜坡的坡度,斜坡BD的長是50米,在山坡的坡底B處測得鐵架頂端A的仰角為,在山坡的坡頂D處測得鐵架頂端A的仰角為,(1)求小山的高度;(2)求鐵架的高度。(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】第16屆省運會在我市隆重舉行,推動了我市各校體育活動如火如荼的開展,在某校射箭隊的一次訓練中,甲,乙兩名運動員前5箭的平均成績相同,教練將兩人的成績繪制成如下尚不完整的統(tǒng)計圖表.
乙運動員成績統(tǒng)計表(單位:環(huán))
第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
8 | 10 | 8 | 6 |
(1)甲運動員前5箭射擊成績的眾數(shù)是 環(huán),中位數(shù)是 環(huán);
(2)求乙運動員第5次的成績;
(3)如果從中選擇一個成績穩(wěn)定的運動員參加全市中學生比賽,你認為應選誰去?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一位農(nóng)民帶上若干千克自產(chǎn)的土豆進城出售.為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數(shù)x與他手中持有的錢數(shù)y(含備用零錢)的關系如圖所示,結合圖象回答下列問題:
(1)農(nóng)民自帶的零錢是多少?
(2)求降價前農(nóng)民手中的錢數(shù)y與售出的土豆千克數(shù)x的函數(shù)關系式;
(3)降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢)是26元,試問他一共帶了多少千克土豆?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商家將一種電視機按進價提高35%后定價,然后打出“九折酬賓,外送50元出租車費”的廣告,結果每臺電視機獲利208元.
(1)求每臺電視機的進價;
(2)另有一家商家出售同類產(chǎn)品,按進價提高40%,然后打出“八折酬賓”的廣告,如果你想買這種產(chǎn)品,應選擇哪一個商家?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,點E在邊CD上,連結AE、BE.給出下列五個關系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.將其中的三個關系式作為題設,另外兩個作為結論,構成一個命題.
⑴用序號寫出一個真命題(書寫形式如:如果×××,那么××);并給出證明;
⑵用序號再寫出三個真命題(不要求證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市城市居民用電收費方式有以下兩種:
(甲)普通電價:全天0.53元/度;
(乙)峰谷電價:峰時(早8:00~晚21:00)0.56元/度;谷時(晚21:00~早8:00)0.36元/度.
估計小明家下月總用電量為200度,
⑴若其中峰時電量為50度,則小明家按照哪種方式付電費比較合適?能省多少元?
⑵請你幫小明計算,峰時電量為多少度時,兩種方式所付的電費相等?
⑶到下月付費時, 小明發(fā)現(xiàn)那月總用電量為200度,用峰谷電價付費方式比普通電價付費方式省了14元,求那月的峰時電量為多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,F是AD的中點,延長BC到點E,使CE=BC,連結DE,CF。
(1)求證:四邊形CEDF是平行四邊形;
(2)若AB=4,AD=6,∠B=60°,求DE的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com