【題目】某商家將一種電視機按進價提高35%后定價,然后打出九折酬賓,外送50元出租車費的廣告,結(jié)果每臺電視機獲利208元.

1)求每臺電視機的進價;

2)另有一家商家出售同類產(chǎn)品,按進價提高40%,然后打出八折酬賓的廣告,如果你想買這種產(chǎn)品,應(yīng)選擇哪一個商家?

【答案】11200元;(2)第二家.

【解析】

試題(1)定價=進價×1+35%),九折優(yōu)惠就是售價=標價×90%,獲利=售價-進價-50元的出租車費

2)求出第二家的售價=進價×1+40%×80%,然后與第一家進行比較,誰低就選擇誰.

試題解析:(1)設(shè)每臺電視機的進價為元,則x1+35%×90%50x=208 解得:x=1200

: 每臺電視機的進價為1200.

21200×1+40%×80%=13441200+208=140814081344

:應(yīng)選擇第二家.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=-x2x+x軸交于A、B兩點(點A在點B的左側(cè)),與y軸于點C,已知點D(0,-).

(1)求直線AC的解析式;

(2)如圖1,P為直線AC上方拋物線上的一動點,當PBD的面積最大時,過PPQx軸于點Q,M為拋物線對稱軸上的一動點,過My軸的垂線,垂足為點N,連接PM、NQ,求PM+MN+NQ的最小值;

(3)在(2)問的條件下,將得到的PBQ沿PB翻折得到PBQ′,將PBQ′沿直線BD平移,記平移中的PBQ′P′B′Q″,在平移過程中,設(shè)直線P′B′x軸交于點E,則是否存在這樣的點E,使得B′EQ″為等腰三角形?若存在,求此時OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=6.

(1)求拋物線的解析式及點D的坐標;

(2)連接BD,F(xiàn)為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;

(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】老師和小明同學玩數(shù)學游戲.老師取出一個不透明的口袋,口袋中裝有三張分別標有數(shù)字1,2,3的卡片,卡片除數(shù)字外其余都相同,老師要求小明同學兩次隨機抽取一張卡片,并計算兩次抽到卡片上的數(shù)字之積是奇數(shù)的概率.于是小明同學用畫樹狀圖的方法尋求他兩次抽取卡片的所有可能結(jié)果.如圖是小明同學所畫的正確樹狀圖的一部分.

(1)補全小明同學所畫的樹狀圖;

(2)求小明同學兩次抽到卡片上的數(shù)字之積是奇數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點A, 0, B在同一條直線上,OD平分∠AOC, OE平分∠BOC.

(1)若∠B0D=160°,求∠BOE的度數(shù);

(2) 若∠COE比∠COD60°.求∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點B作⊙O的切線BD,與CA的延長線交于點D,與半徑AO的延長線交于點E,過點A作⊙O的切線AF,與直徑BC的延長線交于點F.

(1)求證:△ACF∽△DAE;

(2)若S△AOC=,求DE的長;

(3)連接EF,求證:EF是⊙O的切線.

【答案】(1) 見解析; (2)3 ;(3)見解析.

【解析】試題分析:(1)根據(jù)圓周角定理得到BAC=90°,根據(jù)三角形的內(nèi)角和得到ACB=60°根據(jù)切線的性質(zhì)得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;

(2)根據(jù)SAOC=,得到SACF=,通過ACF∽△DAE,求得SDAE=,過AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;

(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,過OOGEFG,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.

試題解析:(1)證明:BCO的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切線,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,過AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,AOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切線.

型】解答
結(jié)束】
25

【題目】如圖,在平面直角坐標系中,O為原點,四邊形ABCO是矩形,點A,C的坐標分別是A(0,2)和C(2,0),點D是對角線AC上一動點(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點E,以線段DE,DB為鄰邊作矩形BDEF.

(1)填空:點B的坐標為   

(2)是否存在這樣的點D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;

(3)①求證:;

②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△A1B1A2,△A2B2A3,△A3B3A4,…,△AnBnAn+1都是等腰直角三角形,其中點A1、A2、…、An在x軸上,點B1、B2、…、Bn在直線y=x上,已知OA2=1,則OA2015的長為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+3a0)經(jīng)過點A1,0),B,0),且與y軸相交于點C

(1)求這條拋物線的表達式;

(2)求∠ACB的度數(shù);

(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DEAC,當△DCE與△AOC相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】掃黑除惡受到廣大人民的關(guān)注,某中學對部分學生就掃黑除惡知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

1)接受問卷調(diào)查的學生共有_______人,扇形統(tǒng)計圖中很了解部分所對應(yīng)扇形的圓心角為_______;

2)請補全條形統(tǒng)計圖;

3)若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對掃黑除惡知識達到很了解基本了解程度的總?cè)藬?shù).

查看答案和解析>>

同步練習冊答案