【題目】如圖1,ABC中,點D在線段AB上,點E在線段CB延長線上,且BE=CD,EPAC交直線CD于點P,交直線AB于點F,ADP=ACB.

(1)圖1中是否存在與AC相等的線段?若存在,請找出,并加以證明,若不存在,說明理由;

(2)若將D在線段AB上,點E在線段CB延長線上改為D在線段BA延長線上,點E在線段BC延長線上,其他條件不變(如圖2).當(dāng)∠ABC=90°,BAC=60°,AB=2時,求線段PE的長.

【答案】(1)見解析;(2)6

【解析】1先證CBD∽△ABC,再轉(zhuǎn)化比例線段即可得出答案;

2)利用平行線的性質(zhì)、30度角所對的直角邊等于斜邊的一半、三角形中位線定理即可得出答案.

解:(1AC=BF.證明如下:

如圖1,∵∠ADP=ACD+A,ACB=ACD+BCD,ADP=ACB,

∴∠BCD=A,

又∵∠CBD=ABC,

∴△CBD∽△ABC,

,

FEAC,

,

由①②可得, ,

BE=CD,

BF=AC;

2)如圖2∵∠ABC=90°,BAC=60°,

∴∠ACB=30°=ADP,

∴∠BCD=60°ACD=60°﹣30°=30°,

PEAC,

∴∠E=ACB=30°,CPE=ACD=30°,

CP=CE,

BE=CD,

BC=DP,

∵∠ABC=90°,D=30°

BC=CD,

DP=CD,即PCD的中點,

又∵PFAC,

FAD的中點,

FPADC的中位線,

FP=AC,

∵∠ABC=90°,ACB=30°

AB=AC,

FP=AB=2

DP=CP=BCCP=CE,

BC=CE,即CBE的中點,

又∵EFAC

AFB的中點,

ACBEF的中位線,

EF=2AC=4AB=8,

PE=EFFP=8﹣2=6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,ABC中,點DE在邊BC上,AD平分∠BAC,AEBC,∠B35°,∠C65°,求∠DAE的度數(shù);

2)如圖②,若把(1)中的條件AEBC變成FDA延長線上一點,FEBC,其他條件不變,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A坐標(biāo)是(0,a),點B坐標(biāo)是(b0),且ab滿足a212a+36+0

1)求A、B兩點的坐標(biāo);

2)如圖1,點Cx軸負半軸一動點,OCOB,BDACDy軸于點E,求證:DO平分∠CDB;

3)如圖2,點FAB中點,點Gx軸正半軸點B右側(cè)一動點,過點FFG的垂線FH,交y軸的負半軸于點H,那么當(dāng)點G的位置不斷變化時,SAFHSFBG的值是否發(fā)生變化?若變化,請說明理由,若不變化,請求出相應(yīng)結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發(fā),那么△PBQ的面積S隨出發(fā)時間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中有一個小島A,它的周圍15海里內(nèi)有暗礁,今有貨船由西向東航行,開始在A島南偏西60° B處,往東航行20海里后到達該島南偏西30° C處后,貨船繼續(xù)向東航行,你認(rèn)為貨船航行途中_____ 觸礁的危險.(填寫:沒有”)

參考數(shù)據(jù):sin60°=cos30°≈0.866.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據(jù)tan30°=,求出AB,進而求出OA,得出A的坐標(biāo),設(shè)過A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3,

∴AB=OB·tan 30°=3.

∴點A的坐標(biāo)為(3,3).

設(shè)反比例函數(shù)的解析式為y= (k≠0),

∴3,∴k=9,則這個反比例函數(shù)的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=,

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3,

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

型】解答
結(jié)束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.

(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點、,對連續(xù)作旋轉(zhuǎn)變換,依次得到,則的直角頂點的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D、E是等邊△ABC的邊BC、AC上的點,且CDAE,ADBE相交于P點,BQADQ,已知PE1,PQ2.5,則AD等于( 。

A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為3的等邊三角形,PAB邊上的一個動點,由AB運動(P不與AB重合),QBC延長線上一動點,與點P同時以相同的速度由CBC延長線方向運動(Q不與C重合),

1)當(dāng)∠BPQ90°時,求AP的長;

2)過PPEAC于點E,連結(jié)PQACD,在點P、Q的運動過程中,線段DE的長是否發(fā)生變化?若不變,求出DE的長度;若變化,求出變化范圍.

查看答案和解析>>

同步練習(xí)冊答案