【題目】在中,,點為直線上一動點(點不與點重合),以為腰作等腰直角,使,連接.
(1)觀察猜想
如圖1,當點在線段上時,
①與的位置關系為__________;
②之間的數(shù)量關系為___________(提示:可證)
(2)數(shù)學思考
如圖2,當點在線段的延長線上時,(1)中的①、②結論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明;
(3)拓展延伸
如圖3,當點在線段的延長線時,將沿線段翻折,使點與點重合,連接,若,請直接寫出線段的長.(提示:做于,做于)
【答案】(1)①BC⊥CF;②BC=CF+DC;(2)C⊥CF成立;BC=CF+DC不成立,正確結論:DC=CF+BC,證明詳見解析;(3)
【解析】
(1)①根據(jù)正方形的性質得,∠BAC=∠DAF=90°,推出△DAB≌△FAC(SAS);②由正方形ADEF的性質可推出△DAB≌△FAC,根據(jù)全等三角形的性質可得到, ,根據(jù)余角的性質即可得到結論;
(2)根據(jù)正方形的性質得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質以及等腰三角形的角的性質可得到結論;
(3)過A作 于H,過E作 于M,證明 ,推出 , ,推出 ,即可解決問題.
(1)①正方形ADEF中,
∵
∴
在△DAB與△FAC中
∴
∴
∴ ,即 ;
②∵
∴
∵
∴
(2)BC⊥CF成立;BC=CF+DC不成立,正確結論:DC=CF+BC
證明:∵△ABC和△ADF都是等腰直角三角形
∴AB=AC,AD=AF,∠BAC=∠DAF=90°,
∴∠BAD=∠CAF
在△DAB和△FAC中
∴△DAB≌△FAC(SAS)
∴∠ABD=∠ACF,DB=CF
∵∠BAC=90°,AB=AC,
∴∠ACB=∠ABC=45°
∴∠ABD=180°-45°=135°
∴∠ACF=∠ABD=135°
∴∠BCF=∠ACF-∠ACB=135°-45°=90°,
∴CF⊥BC
∵CD=DB+BC,DB=CF
∴DC=CF+BC
(3)過A作 于H,過E作 于M,
∵ ,
∴
∴
∴
∵四邊形ADEF是正方形
∴
∵
∴四邊形CMEN是矩形
∴
∵
∴
∴
在△ADH和△DEM中
∴
∴
∴
∴
科目:初中數(shù)學 來源: 題型:
【題目】矩形OABC在平面直角坐標系中的位置如圖所示,已知,點A在x軸上,點C在y軸上,P是對角線OB上一動點(不與原點重合),連接PC,過點P作,交x軸于點D.下列結論:①;②當點D運動到OA的中點處時,;③在運動過程中,是一個定值;④當△ODP為等腰三角形時,點D的坐標為.其中正確結論的個數(shù)是( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線(>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。
(1)如圖1,若△ABC為直角三角形,求的值;
(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標;
(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( )
A.帶①去B.帶②去C.帶③去D.帶①和②去
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將沿著過中點的直線折疊,使點落在邊上的處,稱為第1次操作,折痕到的距離記為,還原紙片后,再將沿著過中點的直線折疊,使點落在邊上的處,稱為第2次操作,折痕到的距離記為,按上述方法不斷操作下去…經(jīng)過第2020次操作后得到的折痕到的距離記為,若,則的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。
A. 主視圖改變,俯視圖改變 B. 左視圖改變,俯視圖改變
C. 俯視圖不變,左視圖改變 D. 主視圖不變,左視圖不變
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)的圖象如圖,給出下列四個結論:①;②;③,④;其中正確結論是( )
A. ①②③ B. ①③④ C. ②③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,,,,AD、BE相交于點M,連接CM.
求證:;
求的度數(shù)用含的式子表示;
如圖2,當時,點P、Q分別為AD、BE的中點,分別連接CP、CQ、PQ,判斷的形狀,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com