【題目】已知關(guān)于x的方程x2axa-2=0.

(1)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根;

(2)若該方程的一個根為1,求a的值及該方程的另一根.

【答案】(1)見解析;(2) ﹣.

【解析】

(1)根據(jù)根的判別式判斷可得;
(2)將x=1代入原方程求出a的值,將a代入原方程可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論.

解:(1)∵△=a2﹣4×1×(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0,

∴不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根;

(2)將x=1代入方程,得:1+a+a﹣2=0,

解得a=,

a=代入方程,整理可得:2x2+x﹣3=0,

即(x﹣1)(2x+3)=0,

解得x=1x=﹣,

∴該方程的另一個根﹣

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)的圖象與軸交于A、B兩點(A點在B點左側(cè)),頂點為,

(1)求A、B、三點坐標。

(2)在平面直角坐標系中,用列表描點法,作出拋物線圖象(如圖),并根據(jù)圖象回答,為何值時,函數(shù)值大于0?

(3)將此拋物線向下平移2個單位,請寫出平移后的解析式。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點AACx軸于點C,過點BBDx軸于點D.

(1)a,b的值及反比例函數(shù)的解析式;

(2)若點P在直線y=﹣x+2上,且SACP=SBDP,請求出此時點P的坐標;

(3)x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EFEBC上,FAC上)折疊,點C與點O恰好重合,則∠OEC   度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一把三角尺放在邊長為2的正方形ABCD(正方形四個內(nèi)角為90°,四邊都相等),并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC交于點Q

探究:(1)當點Q在邊CD 上時,線段PQ 與線段PB之間有怎樣的大小關(guān)系?試證明你觀察得到結(jié)論;

(2)當點Q在邊CD 上時,如果四邊形 PBCQ 的面積為1,求AP長度;

(3)當點P在線段AC 上滑動時,PCQ 是否可能成為等腰三角形?如果可能,指出所有能使△PCQ 成為等腰三角形的點Q的位置,并求出相應(yīng)的AP的長;如果不可能,試說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.

(1)求此拋物線的解析式;

(2)求C、D兩點坐標及BCD的面積;

(3)若點P在x軸上方的拋物線上,滿足SPCD=SBCD,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點CCDAFAF延長線于點D,垂足為D.

(1)求證:CD是⊙O的切線;

(2)CD=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AC4,BC3,AB5AD為△ABC的角平分線,則CD的長度為( 。

A.1B.C.D.

查看答案和解析>>

同步練習冊答案