【題目】如圖,在中,,平分交邊于點(diǎn),分別是,上的點(diǎn),連結(jié),.若,,則的最小值是__________.
【答案】
【解析】
由軸對(duì)稱的性質(zhì)可知:EC=EC′,所以=,由垂線段最短可知:當(dāng)C′F⊥AC時(shí),C′F有最小值,然后利用銳角三角函數(shù)的定義即可其求出FC′的長(zhǎng).
如圖所示:將△ACD沿AD翻折得到△ADC′,連接DC′,過(guò)點(diǎn)C′作C′M⊥AC于M,交AD于N,
∵AD是∠CAB的角平分線,
∴△ACD與△ADC′關(guān)于AD對(duì)稱.
∴點(diǎn)C′在AB上.
由翻折的性質(zhì)可知:AC′=AC=4,EC=EC′,
∴=,
由垂線段最短可知:當(dāng)C′F⊥AC時(shí),C′F有最小值.
在Rt△ACB中, sin∠CAB=
在Rt△AFC′中,sin∠FAC′=,
即,
∴FC′=,
故的最小值是
故填:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將直角邊長(zhǎng)為的等腰直角放在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)、分別在軸,軸的正半軸上,一條拋物線經(jīng)過(guò)點(diǎn)、及點(diǎn).
求該拋物線的解析式;
若點(diǎn)是線段上一動(dòng)點(diǎn),過(guò)點(diǎn)作的平行線交于點(diǎn),連接,當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);
若點(diǎn)在拋物線上,則稱點(diǎn)為拋物線的不動(dòng)點(diǎn),將中的拋物線進(jìn)行平移,平移后,該拋物線只有一個(gè)不動(dòng)點(diǎn),且頂點(diǎn)在直線上,求此時(shí)拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫(xiě)出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知排球場(chǎng)的長(zhǎng)度OD為18 m,位于球場(chǎng)中線處球網(wǎng)的高度AB為2.4 m,一隊(duì)員站在點(diǎn)O處發(fā)球,排球從點(diǎn)O的正上方1.6 m的C點(diǎn)向正前方飛出,當(dāng)排球運(yùn)行至離點(diǎn)O的水平距離OE為6 m時(shí),到達(dá)最高點(diǎn)G建立如圖所示的平面直角坐標(biāo)系
(1) 當(dāng)球上升的最大高度為3.4 m時(shí),對(duì)方距離球網(wǎng)0.4 m的點(diǎn)F處有一隊(duì)員,他起跳后的最大高度為3.1 m,問(wèn)這次她是否可以攔網(wǎng)成功?請(qǐng)通過(guò)計(jì)算說(shuō)明
(2) 若隊(duì)員發(fā)球既要過(guò)球網(wǎng),又不出邊界,問(wèn)排球飛行的最大高度h的取值范圍是多少?(排球壓線屬于沒(méi)出界)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+2x的頂點(diǎn)為A點(diǎn),且與x軸的正半軸交于點(diǎn)B,P點(diǎn)為該拋物線對(duì)稱軸上一點(diǎn),則OP+AP的最小值為( )
A. B. C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,的平分線與的垂直平分線交于點(diǎn),將沿(在上,在上)折疊,點(diǎn)與點(diǎn)恰好重合,則為______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,直線經(jīng)過(guò)點(diǎn)A,且BD⊥l于的D,CE⊥l于的E.
(1)求證:BD+CE=DE;
(2)當(dāng)變換到如圖②所示的位置時(shí),試探究BD、CE、DE的數(shù)量關(guān)系,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1對(duì)應(yīng)的函數(shù)表達(dá)式為y=2x-2,直線l1與x軸交于點(diǎn)D.直線l2:y=kx+b與x軸交于點(diǎn)A,且經(jīng)過(guò)點(diǎn)B,直線l1,l2交于點(diǎn)C(m,2).
(1)求點(diǎn)D,點(diǎn)C的坐標(biāo);
(2)求直線l2對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)求△ADC的面積;
(4)利用函數(shù)圖象寫(xiě)出關(guān)于x,y的二元一次方程組的解.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com