【題目】今年假期某校對操場進行了維修改造,如圖是操場的一角.在長為米,寬為米的長方形場地中間,并排著兩個大小相同的籃球場,這兩個籃球場之間以及籃球場與長方形場地邊沿的距離都為米.
(1)直接寫出一個籃球場的長和寬;(用含字母,,的代數(shù)式表示)
(2)用含字母,,的代數(shù)式表示這兩個籃球場占地面積的和,并求出當,,時,這兩個籃球場占地面積的和.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在數(shù)軸上A、B兩點對應的數(shù)分別是6、﹣6,∠DCE=90°(C與O重合,D點在數(shù)軸的正半軸上).
(1)如圖2,將∠DCE沿數(shù)軸的正半軸向右平移t(0<t<3)個單位后,再繞點頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α.
①當t=1時,求α的度數(shù);
②猜想∠BCE和α的數(shù)量關系,并證明;
(2)如圖3,開始∠D1C1E1與∠DCE重合,將∠DCE沿數(shù)軸的正半軸向右平移t(0<t<3)個單位,再繞點頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α,與此同時,將∠D1C1E1沿數(shù)軸的負半軸向左平移t(0<t<3)個單位,再繞點頂點C1順時針旋轉(zhuǎn)30t度,作C1F1平分∠AC1E1,記∠D1C1F1=β,若α與β滿足,求出此時t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某天,某同學早上8點坐車從余姚圖書館出發(fā)去寧波大學,汽車離開余姚圖書館的距離(千米)與所用時間(分)之間的函數(shù)關系如圖所示.已知汽車在途中停車加油一次,則下列描述不正確的是( )
A.汽車在途中加油用了10分鐘
B.若,則加滿油以后的速度為80千米/小時
C.若汽車加油后的速度是90千米/小時,則
D.該同學到達寧波大學
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABD、∠ACD的角平分線交于點P,若∠A=50°,∠D=10°,則∠P的度數(shù)為( )
A. 10°B. 15°C. 20°D. 25°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結(jié)論的個數(shù)是( )
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù)y=x2+bx+c(b,c都是常數(shù))的圖象經(jīng)過點(1,0)和(0,2).
(1)當﹣2≤x≤2時,求y的取值范圍.
(2)已知點P(m,n)在該函數(shù)的圖象上,且m+n=1,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線、相交于,∠EOC=90°,是的角平分線,,求的度數(shù).其中一種解題過程如下:請在括號中注明根據(jù),在橫線上補全步驟.
解:∵
( )
∴
∵是的角平分線
∴ ( )
∴
∵
( )
∴ ( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=∠DOC=90°,OE平分∠AOD,反向延長射線OE至F.
(1)∠AOD和∠BOC是否互補?說明理由;
(2)射線OF是∠BOC的平分線嗎?說明理由;
(3)反向延長射線OA至點G,射線OG將∠COF分成了4:3的兩個角,求∠AOD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為4的正方形ABCD中,P是BC邊上一動點(不含B、C點).將△ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將△CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.則以下結(jié)論中正確的有_____________(寫出所有正確結(jié)論的序號).
①∠N\AF=45°;②當P為 BC中點時,AE為線段NP的中垂線;
③四邊形AMCB的面積最大值為10; ④線段AM的最小值為2;
⑤當△ABP≌△ADN時,BP=4-4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com