【題目】在平面直角坐標(biāo)系中,的頂點(diǎn)坐標(biāo)分別是、

如果將向上平移1個(gè)單位長(zhǎng)度,再向左平移2個(gè)單位長(zhǎng)度,得到,直接寫(xiě)出、的坐標(biāo),并求的面積;

求出線段AB中的平移過(guò)程中掃過(guò)的面積.

【答案】(1)B1(1,2),C1(0,3),△A1B1C1的面積=2;(2)5.

【解析】

(1)根據(jù)已知條件得到B1(1,2),C1(0,3),根據(jù)三角形的面積公式即可得到結(jié)論;

(2)根據(jù)圖形的面積公式即可得到結(jié)論.

解:(1)B(3,1)、C(2,2),將ABC向上平移1個(gè)單位長(zhǎng)度,再向左平移2個(gè)單位長(zhǎng)度,

B1(1,2),C1(0,3),

A1B1C1的面積=3×2-×2×2-×1×1-×3×1=2;

(2)線段AB在(1)中的平移過(guò)程中掃過(guò)的面積S平行四邊形A1ABB1=5×2-3×1÷2×2-2×1÷2×2=5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】青運(yùn)會(huì)開(kāi)幕式前,福州市公路檢修組乘汽車沿公路檢修線路,約定向東為正,向西為負(fù).某天自A地出發(fā), 到收工時(shí),行走記錄為(單位:千米):

+8、-9、+4、+7、-2、-10、-3、-3、+7、+5

回答下列問(wèn)題:

(1)收工時(shí)在A地的哪邊?A地多少千米? 并用數(shù)軸表示收工地點(diǎn);

(2)若每千米耗油0.3,問(wèn)從A地出發(fā)到收工時(shí),共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上,OC=3,OA=2 ,D是BC的中點(diǎn),將△OCD沿直線OD折疊后得到△OGD,延長(zhǎng)OG交AB于點(diǎn)E,連接DE,則點(diǎn)G的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面內(nèi)已點(diǎn)A3,0)、B(-5,3),將點(diǎn)A向左平移6個(gè)單位到達(dá)C點(diǎn),將點(diǎn)B向下平移6個(gè)單位到達(dá)D點(diǎn)

1)寫(xiě)出C點(diǎn)、D點(diǎn)的坐標(biāo)C __________,D ____________ ;

2)把這些點(diǎn)按ABCDA順次連接起來(lái)這個(gè)圖形的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,P,Q分別從B,A出發(fā)沿BC,AD方向運(yùn)動(dòng),P點(diǎn)的運(yùn)動(dòng)速度是1cm/秒,Q點(diǎn)的運(yùn)動(dòng)速度是2cm/秒,連接A,P并過(guò)Q作QE⊥AP垂足為E.

(1)求證:△ABP∽△QEA;
(2)當(dāng)運(yùn)動(dòng)時(shí)間t為何值時(shí),△ABP≌△QEA;
(3)設(shè)△QEA的面積為y,用運(yùn)動(dòng)時(shí)刻t表示△QEA的面積y(不要求考t的取值范圍).(提示:解答(2)(3)時(shí)可不分先后)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊△ABC中

(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

(2)點(diǎn)P,Q是BC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對(duì)稱點(diǎn)為M,連接AM,PM.

①依題意將圖2補(bǔ)全;

②小茹通過(guò)觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,始終有PA=PM,小茹把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的幾種想法:

想法1:要證明PA=PM,只需證△APM是等邊三角形;

想法2:在BA上取一點(diǎn)N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;

想法3:將線段BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…

請(qǐng)你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構(gòu)成一個(gè)平面圖形.

(1)若固定三根木條AB,BC,AD不動(dòng),AB=AD=2cm,BC=5cm,如圖,量得第四根木條CD=5cm,判斷此時(shí)∠B與∠D是否相等,并說(shuō)明理由.
(2)若固定一根木條AB不動(dòng),AB=2cm,量得木條CD=5cm,如果木條AD,BC的長(zhǎng)度不變,當(dāng)點(diǎn)D移到BA的延長(zhǎng)線上時(shí),點(diǎn)C也在BA的延長(zhǎng)線上;當(dāng)點(diǎn)C移到AB的延長(zhǎng)線上時(shí),點(diǎn)A、C、D能構(gòu)成周長(zhǎng)為30cm的三角形,求出木條AD,BC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y1=﹣ x﹣1與反比例函數(shù)y2= 的圖象交于點(diǎn)A(﹣4,m).
(1)觀察圖象,在y軸的左側(cè),當(dāng)y1>y2時(shí),請(qǐng)直接寫(xiě)出x的取值范圍;
(2)求出反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有四張背面一模一樣的卡片,卡片正面分別寫(xiě)著一個(gè)函數(shù)關(guān)系式,分別是y=2x,y=x2﹣3(x>0),y= (x>0),y=﹣ (x<0),將卡片順序打亂后,隨意從中抽取一張,取出的卡片上的函數(shù)是y隨x的增大而增大的概率是(
A.
B.
C.
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案