精英家教網(wǎng)如圖1所示,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O.
(1)BO與對(duì)角線AC有怎樣的數(shù)理關(guān)系.
(2)如果涂掉AD、OD、CD三條線段,如圖2,這時(shí),BO是Rt△ABC的斜邊AC的什么線段?由(1)圖能發(fā)現(xiàn)什么結(jié)論?試用語言描述.
分析:(1)根據(jù)矩形對(duì)角線相等且互相平分的性質(zhì),可得AC=BD且BO=DO,即可得BO=
1
2
AC;
(2)根據(jù)矩形對(duì)角線平分的性質(zhì)可得AO=CO,即O為AC的中點(diǎn),即BO=AO=CO.
解答:解:(1)∵矩形對(duì)角線相等且平分,
∴AC=BD,BO=DO,
故BO=
1
2
AC.

(2)BO是RT△ABC的斜邊AC邊上的中線.
由圖(1)得BO=
1
2
AC,
語言描述:直角三角形斜邊上的中線等于斜邊的一半.
點(diǎn)評(píng):本題考查了矩形對(duì)角線相等且平分的性質(zhì),考查了直角三角形中斜邊中線等于斜邊的一半的性質(zhì),本題中求得BO=
1
2
AC是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,矩形ABCD的兩條邊在坐標(biāo)軸上,點(diǎn)D與原點(diǎn)重合,對(duì)角線BD所在直線的函數(shù)關(guān)系式為y=
34
x,AD=8.矩形ABCD沿DB方向以每秒1個(gè)單位長度運(yùn)動(dòng),同時(shí)點(diǎn)P從點(diǎn)A出發(fā)做勻速運(yùn)動(dòng),沿矩形ABCD的邊經(jīng)過點(diǎn)B到達(dá)點(diǎn)C,用了14秒.
精英家教網(wǎng)
(1)求矩形ABCD的周長.
(2)如圖2所示,圖形運(yùn)動(dòng)到第5秒時(shí),求點(diǎn)P的坐標(biāo).
(3)設(shè)矩形運(yùn)動(dòng)的時(shí)間為t,當(dāng)0≤t≤6時(shí),點(diǎn)P所經(jīng)過的路線是一條線段,請(qǐng)求出線段所在直線的函數(shù)關(guān)系式.
(4)當(dāng)點(diǎn)P在線段AB或BC上運(yùn)動(dòng)時(shí),過點(diǎn)P作x軸、y軸的垂線,垂足分別為E、F,則矩形PEOF是否能與矩形ABCD相似(或位似)?若能,求出t的值;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,4
3
),點(diǎn)B在x正半軸上,且∠ABO=30度.動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向點(diǎn)B以每秒
3
個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.在x軸上取兩點(diǎn)M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動(dòng)到與原點(diǎn)O重合時(shí)t的值;
(3)如果取OB的中點(diǎn)D,以O(shè)D為邊在Rt△AOB內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請(qǐng)求精英家教網(wǎng)出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△AOB中,∠AOB=90°,AO=4
3
,∠ABO=30°.動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向終點(diǎn)B以每秒
3
個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.在直線OB 上取兩點(diǎn)M、N作等邊△PMN.
(1)求當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動(dòng)到與點(diǎn)O重合時(shí)t的值.
(2)求等邊△PMN的邊長(用t的代數(shù)式表示);
(3)如果取OB的中點(diǎn)D,以O(shè)D為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請(qǐng)求出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并求出S的最大值.
(4)在(3)中,設(shè)PN與EC的交點(diǎn)為R,是否存在點(diǎn)R,使△ODR是等腰三角形?若存在,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用剪刀將形狀如圖1所示的矩形紙片ABCD沿著直線CM剪成兩部分,其中M為AD的中點(diǎn).用這兩部分紙片可以拼成一些新圖形,例如圖2中的Rt△BCE就是拼成的一個(gè)圖形.
(1)用這兩部分紙片除了可以拼成圖2中的Rt△BCE外,還可以拼成一些四邊形.請(qǐng)你試一試,把拼好的四邊形分別畫在圖3、圖4的虛框內(nèi).
(2)若利用這兩部分紙片拼成的Rt△BCE是等腰直角三角形,設(shè)原矩形紙片中的邊AB和BC的長分別為a厘米、b厘米,且a、b恰好是關(guān)于x的方程x2-(m-1)x+m+1=0的兩個(gè)實(shí)數(shù)根,試求出原矩形紙片的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

剪刀將形狀如圖1所示的矩形紙片ABCD沿著直線CM剪成兩部分,其中M為AD的中點(diǎn).用這兩部分紙片可以拼成一些新圖形,例如圖2中的Rt△BCE就是拼成的一個(gè)圖形.若利用這兩部分紙片拼成的Rt△BCE是等腰直角三角形,設(shè)原矩形紙片中的邊AB和BC的長分別為a厘米、b厘米,且a、b恰好是關(guān)于x的方程x2-(m-1)x+m+1=0的兩個(gè)實(shí)數(shù)根,試求出原矩形紙片的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案