閱讀理解
如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復(fù)部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復(fù)部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點(diǎn)Bn與點(diǎn)C重合,無(wú)論折疊多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點(diǎn)B與點(diǎn)C重合;情形二:如圖3,沿∠BAC的平分線AB1折疊,剪掉重復(fù)部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時(shí)點(diǎn)B1與點(diǎn)C重合.
探究發(fā)現(xiàn)
(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC是不是△ABC的好角?  (填“是”或“不是”).
(2)小麗經(jīng)過三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,請(qǐng)?zhí)骄俊螧與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系.根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系為  
應(yīng)用提升
(3)小麗找到一個(gè)三角形,三個(gè)角分別為15°、60°、105°,發(fā)現(xiàn)60°和105°的兩個(gè)角都是此三角形的好角.
請(qǐng)你完成,如果一個(gè)三角形的最小角是4°,試求出三角形另外兩個(gè)角的度數(shù),使該三角形的三個(gè)角均是此三角形的好角.
(1)是
(2)∠B=n∠C
(3)見解析
解:(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC是△ABC的好角;
理由如下:小麗展示的情形二中,如圖3,
∵沿∠BAC的平分線AB1折疊,
∴∠B=∠AA1B1;
又∵將余下部分沿∠B1A1C的平分線A1B2折疊,此時(shí)點(diǎn)B1與點(diǎn)C重合,
∴∠A1B1C=∠C;
∵∠AA1B1=∠C+∠A1B1C(外角定理),
∴∠B=2∠C,∠BAC是△ABC的好角.
故答案是:是;
(2)∠B=3∠C;如圖所示,在△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復(fù)部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復(fù)部分,將余下部分沿∠B2A2C的平分線A2B3折疊,點(diǎn)B2與點(diǎn)C重合,則∠BAC是△ABC的好角.
證明如下:∵根據(jù)折疊的性質(zhì)知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,
∴根據(jù)三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;
∵根據(jù)四邊形的外角定理知,∠BAC+∠B+∠AA1B1﹣∠A1 B1C=∠BAC+2∠B﹣2∠C=180°,
根據(jù)三角形ABC的內(nèi)角和定理知,∠BAC+∠B+∠C=180°,
∴∠B=3∠C;
由小麗展示的情形一知,當(dāng)∠B=∠C時(shí),∠BAC是△ABC的好角;
由小麗展示的情形二知,當(dāng)∠B=2∠C時(shí),∠BAC是△ABC的好角;
由小麗展示的情形三知,當(dāng)∠B=3∠C時(shí),∠BAC是△ABC的好角;
故若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系為∠B=n∠C;
(3)由(2)知設(shè)∠A=4°,∵∠C是好角,∴∠B=4n°;
∵∠A是好角,∴∠C=m∠B=4mn°,其中m、n為正整數(shù)得4+4n+4mn=180
∴如果一個(gè)三角形的最小角是4°,三角形另外兩個(gè)角的度數(shù)是4、172;8、168;16、160;44、132;88°、88°.

(1)在小麗展示的情形二中,如圖3,根據(jù)根據(jù)三角形的外角定理、折疊的性質(zhì)推知∠B=2∠C;
(2)根據(jù)折疊的性質(zhì)、根據(jù)三角形的外角定理知∠A1A2B2=∠C+∠A2B2C=2∠C;
根據(jù)四邊形的外角定理知∠BAC+2∠B﹣2C=180°①,根據(jù)三角形ABC的內(nèi)角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;
利用數(shù)學(xué)歸納法,根據(jù)小麗展示的三種情形得出結(jié)論:∠B=n∠C;
(3)利用(2)的結(jié)論知∠B=n∠C,∠BAC是△ABC的好角,∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角;然后三角形內(nèi)角和定理可以求得另外兩個(gè)角的度數(shù)可以是4、172;8、168;16、160;44、132;88°、88°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,△ABC是⊙O的內(nèi)接正三角形,點(diǎn)D是的中點(diǎn),連接BD并延長(zhǎng)BD到點(diǎn)E,使BD=DE,連接CD和DE.
(1)求證:△CDE是正三角形.
(2)問:△CDE經(jīng)怎樣的變換后能與△ABC成位似圖形?請(qǐng)?jiān)趫D中直接畫出△CDE變換后的對(duì)應(yīng)三角形△CD'E',并求出△CD'E'與△ABC的位似比.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)M、N分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),且BM=CN,AM交BN于點(diǎn)P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)D為銳角∠ABC內(nèi)一點(diǎn),點(diǎn)M在邊BA上,點(diǎn)N在邊BC上,且DM=DN,∠BMD+∠BND=180°.
求證:BD平分∠ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:D是AC上一點(diǎn),BC=AE,DE∥AB,∠B=∠DAE.求證:AB=DA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.圓的直徑增加一倍后,新圓的周長(zhǎng)與新圓的直徑的比為 [ 。
A.πB.π+1C.2πD.4π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形AEFD與EBCF是相似的梯形,AE:EB=2:3,EF=12cm,求AD、BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四邊形ABCD四邊形A'B'C'D',連接AC和A'C',△ABC與△A'B'C'相似嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,點(diǎn)A、B都是格點(diǎn),則線段AB的長(zhǎng)度為(  )

A.5        B.6       C.7        D.25

查看答案和解析>>

同步練習(xí)冊(cè)答案