已知:D是AC上一點,BC=AE,DE∥AB,∠B=∠DAE.求證:AB=DA.
證明見解析.

試題分析:由平行線的性質(zhì),可得內(nèi)錯角相等,根據(jù)AAS,可得兩三角形全等,從而根據(jù)全等三角形對應邊相等的性質(zhì),可得證明結果.
試題解析:∵DE∥AB,
∴∠EDA=∠CAB.
在△DAE和△ACB中,∵∠EDA=∠CAB,∠DAE=∠B,AE=BC,
∴△DAE≌ACB(AAS),
∴AB=DA.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀理解
如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合,無論折疊多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;情形二:如圖3,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合.
探究發(fā)現(xiàn)
(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC是不是△ABC的好角?  (填“是”或“不是”).
(2)小麗經(jīng)過三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,請?zhí)骄俊螧與∠C(不妨設∠B>∠C)之間的等量關系.根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設∠B>∠C)之間的等量關系為  
應用提升
(3)小麗找到一個三角形,三個角分別為15°、60°、105°,發(fā)現(xiàn)60°和105°的兩個角都是此三角形的好角.
請你完成,如果一個三角形的最小角是4°,試求出三角形另外兩個角的度數(shù),使該三角形的三個角均是此三角形的好角.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,△MNQ中,MQ≠NQ.
(1)請你以MN為一邊,在MN的同側構造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構造的方法;

(2)參考(1)中構造全等三角形的方法解決下面問題:
如圖,在四邊形ABCD中,,∠B=∠.求證:CD=AB.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知正方形ABCD,點E是BC上一點,點F是CD延長線上一點,連接EF,若BE=DF,點P是EF的中點.
(1)求證:DP平分∠ADC;
(2)若∠CEF=75°,CF=,求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,D,E分別是△ABC邊AB,BC上的點,AD=2BD,BE=CE,設△ADF的面積為S1,△FCE的面積為S2,若SABC=6,則S1-S2的值為____________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在△DBC中,BC=DC,過點C作CE⊥DC交DB的延長線于點E,過點C作AC⊥BC且AC=EC,連結AB.
求證:AB=ED.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當△EFC為直角三角形時,BE的長為    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在矩形ABCD中,已知AB=2cm,BC=3cm,現(xiàn)有一根長為2 cm的木棒EF緊貼著矩形的邊(即兩個端點始終落在矩形的邊上),按逆時針方向滑動一周,則木棒EF的中點P在運動過程中所圍成的圖形的面積為( )
A.6 cm2B.3 cm2C.(2+π)cm2D.(6-π)cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知,如圖,在△ABC中,OB和OC分別平分∠ABC和∠ACB,過O作DE∥BC,分別交AB、AC于點D、E,若BD+CE=5,則線段DE的長為    (   )
A.5      B.6      C.7      D.8

查看答案和解析>>

同步練習冊答案