【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線相交于O.過點(diǎn)O作EF∥BC分別交AB、AC于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】∠AEF=60°,∠EFC=140°.
【解析】
先根據(jù)三角形內(nèi)角和定理,求出∠OBC+∠OCB的度數(shù),再根據(jù)角平分線定義和已知中的∠ABC:∠ACB=3:2,求出∠ABC、∠ACB的度數(shù),最后依據(jù)平行線的性質(zhì)求出∠AEF和∠EFC的度數(shù).
∵∠ABC: ∠ACB=3:2,
∴設(shè)∠ABC=3x, ∠ACB=2x,
∵BO、CO分別平分 ∠ ABC、 ∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°, ∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知是等腰直角三角形,,點(diǎn)D是BC的中點(diǎn)作正方形DEFG,使點(diǎn)A、C分別在DG和DE上,連接AE,BG.
試猜想線段BG和AE的數(shù)量關(guān)系是______;
將正方形DEFG繞點(diǎn)D逆時針方向旋轉(zhuǎn),
判斷中的結(jié)論是否仍然成立?請利用圖2證明你的結(jié)論;
若,當(dāng)AE取最大值時,求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是直線AB上的一動點(diǎn)(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點(diǎn)D在邊AB上時,試探究線段BD、AB和AF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)點(diǎn)D在AB的延長線或反向延長線上時,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC 是等腰直角三角形,BC=AB,A 點(diǎn)在 x 負(fù)半軸上,直角頂點(diǎn) B 在 y 軸上,點(diǎn) C 在 x 軸上方.
(1)如圖1所示,若A的坐標(biāo)是(﹣3,0),點(diǎn) B的坐標(biāo)是(0,1),求點(diǎn) C 的坐標(biāo);
(2)如圖2,過點(diǎn) C 作 CD⊥y 軸于 D,請直接寫出線段OA,OD,CD之間等量關(guān)系;
(3)如圖3,若 x 軸恰好平分∠BAC,BC與 x 軸交于點(diǎn) E,過點(diǎn) C作 CF⊥x 軸于 F,問 CF 與 AE 有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直線l1∥l2,且l3和l1,l2分別相交于A,B兩點(diǎn),l4和l1,l2分別交于C,D兩點(diǎn),∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,
點(diǎn)P在線段AB上.
(1)若∠1=22°,∠2=33°,則∠3=________;
(2)試找出∠1,∠2,∠3之間的等量關(guān)系,并說明理由;
(3)應(yīng)用(2)中的結(jié)論解答下列問題;
如圖②,點(diǎn)A在B處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數(shù);
(4)如果點(diǎn)P在直線l3上且在A,B兩點(diǎn)外側(cè)運(yùn)動時,其他條件不變,試探究∠1,∠2,∠3之間的關(guān)系(點(diǎn)P和A,B兩點(diǎn)不重合),直接寫出結(jié)論即可.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時將點(diǎn)A,B分別向上平移2個單位,再向右平移1個單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)求點(diǎn)C,D的坐標(biāo)及平行四邊形ABDC的面積.
(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使=2,若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說明理由.
(3)點(diǎn)P是四邊形ABCD邊上的點(diǎn),若△OPC為等腰三角形時,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點(diǎn)B,連接PA交⊙O于點(diǎn)C,連接BC.
(1)求證:∠BAC=∠CBP;
(2)求證:PB2=PCPA;
(3)當(dāng)AC=6,CP=3時,求sin∠PAB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要從甲、乙兩名同學(xué)中挑選一人參加創(chuàng)新能力大賽,在最近的五次選拔測試中, 他倆的成績分別如下表,請根據(jù)表中數(shù)據(jù)解答下列問題:
第 1 次 | 第 2 次 | 第 3 次 | 第 4 次 | 第 5 次 | 平均分 | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | 60 分 | 75 分 | 100 分 | 90 分 | 75 分 | 80 分 | 75 分 | 75 分 | 190 |
乙 | 70 分 | 90 分 | 100 分 | 80 分 | 80 分 | 80 分 | 80 分 |
(1)把表格補(bǔ)充完整:
(2)在這五次測試中,成績比較穩(wěn)定的同學(xué)是多少;若將 80 分以上(含 80 分) 的成績視為優(yōu)秀,則甲、乙兩名同學(xué)在這五次測試中的優(yōu)秀率分別是多少;
(3)歷屆比賽表明,成績達(dá)到80分以上(含 80分)就很可能獲獎,成績達(dá)到 90分以上(含90分)就很可能獲得一等獎,那么你認(rèn)為選誰參加比賽比較合適?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是 的中線, 是線段 上一點(diǎn)(不與點(diǎn) 重合). 交 于點(diǎn) , ,連結(jié) .
(1)如圖1,當(dāng)點(diǎn) 與 重合時,求證:四邊形 是平行四邊形;
(2)如圖2,當(dāng)點(diǎn) 不與 重合時,(1)中的結(jié)論還成立嗎?請說明理由.
(3)如圖3,延長 交 于點(diǎn) ,若 ,且 .當(dāng) , 時,求 的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com