【題目】如圖1,在矩形中,點(diǎn)分別在邊上,點(diǎn)分別在邊上,且

如圖2,過(guò)點(diǎn)于點(diǎn)過(guò)點(diǎn)于點(diǎn)可知四邊形四邊形四邊形四邊形都是矩形,即,通過(guò)證明可求得的值為_

如圖3,在正方形中,點(diǎn)分別在邊上,于點(diǎn),則的值為

如圖4,在的條件下,延長(zhǎng)的延長(zhǎng)線于點(diǎn)連接于點(diǎn).若的值.

【答案】1;(21;(32

【解析】

(1)如圖5,先證明在直角三角形和直角三角形,,即;再由,可證明;據(jù)此列出比例關(guān)系,即可得到答案.

2)如圖6,先證明,再證明,據(jù)此列出比例關(guān)系,即可得到答案.

3)如圖7,先根據(jù),設(shè),,則得到;再由,可求得,從而可得;由,可得,據(jù)此列出比例關(guān)系,即可得到答案.

解:(1)如圖5,設(shè)相交于點(diǎn),相交于點(diǎn),相交于點(diǎn),

圖5

∵四邊形,四邊形都是矩形,

,即

,

,

又∵,

,即,

,

,

∴在中,

,

,

故答案為:

2)如圖6,過(guò),過(guò),設(shè)交于點(diǎn),交于點(diǎn),則,

6

,

,

,

,

,

∴在中,

,

又正方形

故答案為:1

3)如圖7,

7

,

設(shè),,

,,

,

,

,

,

,

,

,

,

,

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=x22x+3x軸于點(diǎn)A、C(點(diǎn)A在點(diǎn)C左側(cè)),交y軸于點(diǎn)B

(1)求A,B,C三點(diǎn)坐標(biāo);

(2)如圖1,點(diǎn)DAC中點(diǎn),點(diǎn)E在線段BD上,且BE=2DE,連接CE并延長(zhǎng)交拋物線于點(diǎn)M,求點(diǎn)M坐標(biāo);

(3)如圖2,將直線AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)15°后交y軸于點(diǎn)G,連接CG,點(diǎn)P為△ACG內(nèi)一點(diǎn),連接PA、PCPG,分別以APAG為邊,在它們的左側(cè)作等邊△APR和等邊△AGQ,求PA+PC+PG的最小值,并求當(dāng)PA+PC+PG取得最小值時(shí)點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知C3,4),以點(diǎn)C為圓心的圓與y軸相切.點(diǎn)A、Bx軸上,且OAOB.點(diǎn)P為⊙C上的動(dòng)點(diǎn),∠APB90°,則AB長(zhǎng)度的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角標(biāo)系中,已知ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,2)B(3,4),C(1,6)

1)畫出△ABC,并求出BC所在直線的解析式;

2)畫出△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到的△AB1C1,并求出△ABC在上述旋轉(zhuǎn)過(guò)程中掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò)A﹣10),B50),C0)三點(diǎn).

1)求拋物線的解析式;

2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);

3)點(diǎn)Mx軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,MN四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB90°,∠B30°,以點(diǎn)O為圓心,OA為半徑作弧交AB于點(diǎn)A、點(diǎn)C,交OB于點(diǎn)D,若OA3,則陰影都分的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:

數(shù)學(xué)活動(dòng)課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿足條件的點(diǎn),使智慧三角形(畫出點(diǎn)的位置,保留作圖痕跡);

如圖,在正方形中,的中點(diǎn),上一點(diǎn),且,試判斷是否為智慧三角形,并說(shuō)明理由;

運(yùn)用:

如圖,在平面直角坐標(biāo)系中,的半徑為,點(diǎn)是直線上的一點(diǎn),若在上存在一點(diǎn),使得智慧三角形,當(dāng)其面積取得最小值時(shí),直接寫出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,于點(diǎn),,為了研究圖中線段之間的關(guān)系,設(shè),,

1)可通過(guò)證明,得到關(guān)于的函數(shù)表達(dá)式__________,其中自變量的取值范圍是___________;

2)根據(jù)圖中給出的(1)中函數(shù)圖象上的點(diǎn),畫出該函數(shù)的圖象;

3)借助函數(shù)圖象,回答下列問(wèn)題:①的最小值是__________;②已知當(dāng)時(shí),的形狀與大小唯一確定,借助函數(shù)圖象給出的一個(gè)估計(jì)值(精確到0.1)或者借助計(jì)算給出的精確值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形的邊長(zhǎng)為4,點(diǎn)、分別在上,,相交于點(diǎn),點(diǎn)的中點(diǎn),連接,則的長(zhǎng)為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案