【題目】如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為( )
A. 7 B. C. D. 9
【答案】B
【解析】
作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.
解答:解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.
∵CD平分∠ACB,
∴∠ACD=∠BCD
∴DF=DG,弧AD=弧BD,
∴DA=DB.
∵∠AFD=∠BGD=90°,
∴△AFD≌△BGD,
∴AF=BG.
易證△CDF≌△CDG,
∴CF=CG.
∵AC=6,BC=8,
∴AF=1,(也可以:設AF=BG=X,BC=8,AC=6,得8-x=6+x,解x=1)
∴CF=7,
∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).
∴CD=.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0),下列結論:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤當x>﹣1時,y>0.其中正確結論的個數(shù)是( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣(x+1)(x﹣3)與x軸分別交于點A、B(點A在B的右側),與y軸交于點C,⊙P是△ABC的外接圓.
(1)直接寫出點A、B、C的坐標及拋物線的對稱軸;
(2)求⊙P的半徑;
(3)點D在拋物線的對稱軸上,且∠BDC>90°,求點D縱坐標的取值范圍;
(4)E是線段CO上的一個動點,將線段AE繞點A逆時針旋轉45°得線段AF,求線段OF的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若兩個不重合的二次函數(shù)圖象關于軸對稱,則稱這兩個二次函數(shù)為“關于軸對稱的二次函數(shù)”.
(1)請寫出兩個“關于軸對稱的二次函數(shù)”;
(2)已知兩個二次函數(shù)和是“關于軸對稱的二次函數(shù)”,求函數(shù)的頂點坐標(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,點D、E分別在邊BC、AC上,點F在DE的延長線上,AD=AF,AECE=DEEF.
(1)求證:△ADE∽△ACD;
(2)如果AEBD=EFAF,求證:AB=AC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在樓房AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過樹頂E點恰好看到塔的底部D點,且俯角α為45°,從樓底B點1米的P點處經(jīng)過樹頂E點恰好看到塔的頂部C點,且仰角β為30°.已知樹高EF=6米,求塔CD的高度(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC的周長為21,底邊BC=5,AB的垂直平分線DE交AB于點D,交AC于點E,則△BEC的周長為( )
A. 13 B. 14 C. 15 D. 16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A(a,0),點B(2﹣a,0),且A在B的左邊,點C(1,﹣1),連接AC,BC,若在AB,BC,AC所圍成區(qū)域內(含邊界),橫坐標和縱坐標都為整數(shù)的點的個數(shù)為4個,那么a的取值范圍為(。
A. ﹣1<a≤0B. 0≤a<1C. ﹣1<a<1D. ﹣2<a<2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC繞點A按順時針方向旋轉45°后得到△AB′C′,則線段BC在上述旋轉過程中所掃過部分(陰影部分)的面積是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com