【題目】已知代數(shù)式A=x2+xy+2y-1,B=2x2-xy
(1)若(x+1)2+|y-2|=0,求2A-B的值;
(2)若2A-B的值與y的取值無關(guān),求x的值.
【答案】(1) 0;(2) .
【解析】
(1)根據(jù)非負(fù)數(shù)之和等于0,則每一個(gè)非負(fù)數(shù)都為0,可求出x、y的值,然后將2A-B化簡(jiǎn)后代入x、y的值計(jì)算即可;
(2) 因?yàn)?/span>2A-B的值與y的取值無關(guān),則2A-B化簡(jiǎn)后的系數(shù)為0,據(jù)此可求出x的值.
(1)∵(x+1)2+|y-2|=0,(x+1)2≥0,|y-2|≥0,
∴x+1=0,y-2=0,解得x=-1,y=2,
當(dāng)x=-1,y=2時(shí),
故 2A-B的值為0.
(2) 由(1)的結(jié)論
∵2A-B的值與y的取值無關(guān),∴,解得
故x的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在解決問題:已知a=,求2a2﹣8a+1的值,他是這樣分析與解的:
∵a===2﹣
∴a﹣2=﹣
∴(a﹣2)2=3,a2﹣4a+4=3
∴a2﹣4a=﹣1
∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1
請(qǐng)你根據(jù)小明的分析過程,解決如下問題:
(1)化簡(jiǎn)+++…+
(2)若a=,求4a2﹣8a+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:若a,b都是非負(fù)實(shí)數(shù),則a+b≥2.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.
證明:∵()2≥0,∴a-2+b≥0.
∴a+b≥2.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.
舉例應(yīng)用:已知x>0,求函數(shù)y=x的最小值.
解:y=x=2.當(dāng)且僅當(dāng)x=,即x=時(shí),“=”成立.
∴當(dāng)x=時(shí),函數(shù)取得最小值,y最小=2.
問題解決:
(1)已知x>0,求函數(shù)y=的最小值;
(2)求代數(shù)式(m>-1)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC的頂點(diǎn)A在x軸的正半軸上,OA=4,OC=2,點(diǎn)D、E、F、G分別為邊OA、AB、BC、CO的中點(diǎn),連結(jié)DE、EF、FG、GD.
(1)若點(diǎn)C在y軸的正半軸上,當(dāng)點(diǎn)B的坐標(biāo)為(2,4)時(shí),判斷四邊形DEFG的形狀,并說明理由.
(2)若點(diǎn)C在第二象限運(yùn)動(dòng),且四邊形DEFG為菱形時(shí),求點(diǎn)四邊形OABC對(duì)角線OB長(zhǎng)度的取值范圍.
(3)若在點(diǎn)C的運(yùn)動(dòng)過程中,四邊形DEFG始終為正方形,當(dāng)點(diǎn)C從X軸負(fù)半軸經(jīng)過Y軸正半軸,運(yùn)動(dòng)至X軸正半軸時(shí),直接寫出點(diǎn)B的運(yùn)動(dòng)路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)a、b、c在數(shù)軸上的位置如圖所示:
(1)用“>”、“=”或“<”填空:︱b︱ ︱c︱;—a c.
(2)化簡(jiǎn):|b-c|-|b-a|+|a+c|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AC經(jīng)過點(diǎn)(1,5)和(-1,1)與直線BC :y = -2x -1相交于點(diǎn)C 。
(1)求直線AC的解析式.
(2)求直AC與y軸交點(diǎn)A的坐標(biāo)及直線BC與y軸交點(diǎn)B的坐標(biāo).
(3)求兩直線交點(diǎn)C的坐標(biāo).
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雞兔同籠問題是我國(guó)古代著名趣題之一,大約在 1500 年前,《孫子算經(jīng)》中就記載了這個(gè)有趣的問題.書中是這樣敘述的:“今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?”這四句話的意思是:有若干只雞、兔同在一個(gè)籠子里,從上上面數(shù),有 35 個(gè)頭;從下面數(shù),有 94 只腳 .求籠中各有幾只雞和兔?經(jīng)計(jì)算可得( )
A. 雞 20 只,兔 15 只 B. 雞 12 只,兔 23 只
C. 雞 15 只,兔 20 只 D. 雞 23 只,兔 12 只
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC交于點(diǎn)D,DE⊥AC,垂足為E,交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)若∠C=60°,AC=12,求的長(zhǎng).
(3)若tanC=2,AE=8,求BF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com