【題目】某商店銷(xiāo)售一種商品,童威經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):該商品的周銷(xiāo)售量(件)是售價(jià)(元/件)的一次函數(shù),其售價(jià)、周銷(xiāo)售量、周銷(xiāo)售利潤(rùn)(元)的三組對(duì)應(yīng)值如下表:
售價(jià)(元/件) | 50 | 60 | 80 |
周銷(xiāo)售量(件) | 100 | 80 | 40 |
周銷(xiāo)售利潤(rùn)(元) | 1000 | 1600 | 1600 |
注:周銷(xiāo)售利潤(rùn)=周銷(xiāo)售量×(售價(jià)-進(jìn)價(jià))
(1)①求關(guān)于的函數(shù)解析式(不要求寫(xiě)出自變量的取值范圍)
②該商品進(jìn)價(jià)是_________元/件;當(dāng)售價(jià)是________元/件時(shí),周銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是__________元
(2)由于某種原因,該商品進(jìn)價(jià)提高了元/件,物價(jià)部門(mén)規(guī)定該商品售價(jià)不得超過(guò)65元/件,該商店在今后的銷(xiāo)售中,周銷(xiāo)售量與售價(jià)仍然滿足(1)中的函數(shù)關(guān)系.若周銷(xiāo)售最大利潤(rùn)是1400元,求的值
【答案】(1)①與的函數(shù)關(guān)系式是;②40,70,1800;(2)5.
【解析】
(1)①設(shè)與的函數(shù)關(guān)系式為,根據(jù)表格中的數(shù)據(jù)利用待定系數(shù)法進(jìn)行求解即可;
②設(shè)進(jìn)價(jià)為a元,根據(jù)利潤(rùn)=售價(jià)-進(jìn)價(jià),列方程可求得a的值,根據(jù)“周銷(xiāo)售利潤(rùn)=周銷(xiāo)售量×(售價(jià)-進(jìn)價(jià))”可得w關(guān)于x的二次函數(shù),利用二次函數(shù)的性質(zhì)進(jìn)行求解即可得;
(2)根據(jù)“周銷(xiāo)售利潤(rùn)=周銷(xiāo)售量×(售價(jià)-進(jìn)價(jià))”可得,進(jìn)而利用二次函數(shù)的性質(zhì)進(jìn)行求解即可.
(1)①設(shè)與的函數(shù)關(guān)系式為,將(50,100),(60,80)分別代入得,
,解得,,,
∴與的函數(shù)關(guān)系式是;
②設(shè)進(jìn)價(jià)為a元,由售價(jià)50元時(shí),周銷(xiāo)售是為100件,周銷(xiāo)售利潤(rùn)為1000元,得
100(50-a)=1000,
解得:a=40,
依題意有,
=
=
∵,
∴當(dāng)x=70時(shí),w有最大值為1800,
即售價(jià)為70元/件時(shí),周銷(xiāo)售利潤(rùn)最大,最大為1800元,
故答案為:40,70,1800;
(2)依題意有,
∵,∴對(duì)稱軸,
∵,∴拋物線開(kāi)口向下,
∵,∴隨的增大而增大,
∴當(dāng)時(shí),∴有最大值,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作發(fā)現(xiàn):如圖,已知△ABC和△ADE均為等腰三角形,AB=AC,AD=AE,將這兩個(gè)三角形放置在一起,使點(diǎn)B,D,E在同一直線上,連接CE.
(1)如圖1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求證:△BAD≌△CAE;
(2)在(1)的條件下,求∠BEC的度數(shù);
拓廣探索:(3)如圖2,若∠CAB=∠EAD=120°,BD=4,CF為△BCE中BE邊上的高,請(qǐng)直接寫(xiě)出EF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)當(dāng)天,小明帶了四個(gè)粽子(除味道不同外,其它均相同),其中兩個(gè)是大棗味的,另外兩個(gè)是火腿味的,準(zhǔn)備按數(shù)量平均分給小紅和小剛兩個(gè)好朋友.
(1)請(qǐng)你用樹(shù)狀圖或列表的方法表示小紅拿到的兩個(gè)粽子的所有可能性;
(2)請(qǐng)你計(jì)算小紅拿到的兩個(gè)粽子剛好是同一味道的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),,,…和,,,…分別在直線和軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果(1,1),(),那么點(diǎn)的縱坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫(xiě)出結(jié)果不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=,BC=2,以AB的中點(diǎn)為圓心,OA的長(zhǎng)為半徑作半圓交AC于點(diǎn)D,則圖中陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò),兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C,頂點(diǎn)為D,連結(jié)CD.
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)P為該拋物線上一動(dòng)點(diǎn)(與點(diǎn)B、C不重合),設(shè)點(diǎn)P的橫坐標(biāo)為t.
①當(dāng)點(diǎn)P在直線BC的下方運(yùn)動(dòng)時(shí),求的面積的最大值;
②該拋物線上是否存在點(diǎn)P,使得若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
情境觀察:將矩形ABCD紙片沿對(duì)角線AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是 ▲ ,∠CAC′= ▲ °.
問(wèn)題探究:如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
拓展延伸:如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H. 若AB=k AE,AC=k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),頂點(diǎn)坐標(biāo)為(1,n),則下列結(jié)論:
①2a+b<0;
②﹣1≤a≤﹣;
③對(duì)于任意實(shí)數(shù)m,a(m2﹣1)+b(m﹣1)≤0總成立;
④關(guān)于x的方程ax2+bx+c=n+1有兩個(gè)不相等的實(shí)數(shù)根.
其中結(jié)論正確的序號(hào)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com