【題目】如圖,拋物線 與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,連接BC.
(1)求點(diǎn)A、B、C的坐標(biāo).
(2)點(diǎn)P為AB上的動(dòng)點(diǎn)(點(diǎn)A、O、B除外),過點(diǎn)P作直線PN⊥x軸,交拋物線于點(diǎn)N,交直線BC于點(diǎn)M.設(shè)點(diǎn)P到原點(diǎn)的值為t,MN的長(zhǎng)度為s,求s與t的函數(shù)關(guān)系式.
(3)在(2)的條件下,試求出在點(diǎn)P運(yùn)動(dòng)的過程中,由點(diǎn)O、P、N圍成的三角形與Rt△COB相似時(shí)點(diǎn)P的坐標(biāo).
【答案】
(1)
解:∵點(diǎn)A、B、C在二次函數(shù)圖象上
∴把x=0代入 ,得y=2
把y=0代入 ,得x1=﹣1,x2=4,
∴A(﹣1,0),B(4,0),C(0,2);
(2)
解:設(shè)直線BC的解析式為y=kx+b(k≠0),
把B(4,0),C(0,2)代入,得 ,
∴直線BC的解析式為
∵OP=t
∴P(t,0),M(t,﹣ t+2),N(t,﹣ t2+ t+2),
如圖,
∴S1=N1P1﹣M1P1=﹣ t2+ t+2﹣(﹣ t+2)=﹣ t2+2t(0<t<4),
S2=M2P2﹣N2P2=﹣ t+2﹣(﹣ t2+ t+2)= t2﹣2t(﹣1<t<0),
(3)
解:如圖,
①若△OPN∽△OCB,當(dāng)OP與OC是對(duì)應(yīng)邊時(shí),則 ,即
化簡(jiǎn)得:t2+t﹣4=0,
解得: , (不合題意,舍去)
②若△OPN∽△OBC,當(dāng)OP與OB是對(duì)應(yīng)邊時(shí),則 ,即
化簡(jiǎn)得:t2﹣2t﹣4=0
解得:t3=1+ ,t4=1﹣ (不合題意,舍去)
∴符合題意的點(diǎn)P的坐標(biāo)為( ,0)和(1+ ,0).
【解析】(1)分別令y=0、x=0即可以求出A、B、C的坐標(biāo),(2)應(yīng)分為點(diǎn)P在y軸的左側(cè)和點(diǎn)P在y軸的右側(cè)兩種情況,分別求s與t的函數(shù)關(guān)系式,MN的長(zhǎng)就是M、N兩點(diǎn)縱坐標(biāo)的差,(3)在沒有確定對(duì)應(yīng)關(guān)系的情況下,兩三角形相似應(yīng)分兩種情況討論解決.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小明在自家樓頂上的點(diǎn)A處測(cè)量建在與小明家樓房同一水平線上鄰居的電梯的高度,測(cè)得電梯樓頂部B處的仰角為45°,底部C處的俯角為26°,已知小明家樓房的高度AD=15米,求電梯樓的高度BC(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),∠BAC的平分線AD交⊙O于點(diǎn)D,過點(diǎn)D垂直于AC的直線交AC的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)如圖AD=5,AE=4,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(3,﹣3),點(diǎn)B的坐標(biāo)為(﹣1,3),回答下列問題
(1)點(diǎn)C的坐標(biāo)是 .
(2)點(diǎn)B關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)是 .
(3)△ABC的面積為 .
(4)畫出△ABC關(guān)于x軸對(duì)稱的△A′B′C′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀所給材料再完成后面的問題:
如圖①所示,AB∥CD,試說明∠B+∠D=∠BED.
解:過點(diǎn)E作EF∥CD,易知EF∥AB,所以∠DEF=∠D,∠FEB=∠B,所以∠BED=∠FEB+∠DEF=∠B+∠D.若圖中點(diǎn)E的位置發(fā)生變化,如圖②③④所示,則上面問題中的三個(gè)角(均小于180°)有何數(shù)量關(guān)系?寫出結(jié)論,并選擇圖②說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年9月,莉莉進(jìn)入八中初一,在準(zhǔn)備開學(xué)用品時(shí),她決定購買若干個(gè)某款筆記本,甲、乙兩家文具店都有足夠數(shù)量的該款筆記本,這兩家文具店該款筆記本標(biāo)價(jià)都是20元/個(gè).甲文具店的銷售方案是:購買該筆記本的數(shù)量不超過5個(gè)時(shí),原價(jià)銷售;購買該筆記本超過5個(gè)時(shí),從第6個(gè)開始按標(biāo)價(jià)的八折出售:乙文具店的銷售方案是:不管購買多少個(gè)該款筆記本,一律按標(biāo)價(jià)的九折出售.
(1)若設(shè)莉莉要購買x(x>5)個(gè)該款筆記本,請(qǐng)用含x的代數(shù)式分別表示莉莉到甲文具店和乙文具店購買全部該款筆記本所需的費(fèi)用;
(2)在(1)的條件下,莉莉購買多少個(gè)筆記本時(shí),到乙文具店購買全部筆記本所需的費(fèi)用與到甲文具店購買全部筆記本所需的費(fèi)用相同?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)根據(jù)圖中提供的信息,回答下列問題
(1)一個(gè)暖瓶與一個(gè)水杯分別是多少元?
(2)甲、乙兩家商場(chǎng)同時(shí)出售同樣的暖瓶和水杯,為了迎接新年,兩家商場(chǎng)都在搞促銷活動(dòng),甲商場(chǎng)規(guī)定: 這兩種商品都打九折;乙商場(chǎng)規(guī)定:買一個(gè)暖瓶贈(zèng)送一個(gè)水杯。若某單位想要買4個(gè)暖瓶和15個(gè)水杯,請(qǐng)問選擇哪家商場(chǎng)購買更合算,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形和下列邊長(zhǎng)相同的正多邊形地磚組合中,不能夠鋪滿地面的是( )
A. 正三角形 B. 正六邊形
C. 正八邊形 D. 正三角形和正六邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蘋果生產(chǎn)基地,用30名工人進(jìn)行采摘或加工蘋果 ,每名工人只能做其中一項(xiàng)工作.蘋果的銷售方式有兩種:一種是可以直接出售;另一種是可以將采摘的蘋果加工成罐頭出售.直接出售每噸獲利4 000元;加工成罐頭出售每噸獲利10 000元.采摘的工人每人可采摘蘋果0.4噸;加工罐頭的工人每人可加工0.3噸.設(shè)有x名工人進(jìn)行蘋果采摘,全部售出后,總利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)如何分配工人才能獲利最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com