【題目】如圖,∠AOB=30,∠AOB內(nèi)有一定點P,且OP=10.在OA上有一動點Q,OB上有一動點R.若ΔPQR周長最小,則最小周長是___________
【答案】10
【解析】
先畫出圖形,作PM⊥OA與OA相交于M,并將PM延長一倍到E,即ME=PM.作PN⊥OB與OB相交于N,并將PN延長一倍到F,即NF=PN.連接EF與OA相交于Q,與OB相交于R,再連接PQ,PR,則△PQR即為周長最短的三角形.再根據(jù)線段垂直平分線的性質(zhì)得出△PQR=EF,再根據(jù)三角形各角之間的關(guān)系判斷出△EOF的形狀即可求解.
設(shè)∠POA=θ,則∠POB=30°-θ,作PM⊥OA與OA相交于M,并將
PM延長一倍到E,即ME=PM.
作PN⊥OB與OB相交于N,并將PN延長一倍到F,即NF=PN.
連接EF與OA相交于Q,與OB相交于R,再連接PQ,PR,則△PQR即為周長最短的三角形.
∵OA是PE的垂直平分線,
∴EQ=QP;
同理,OB是PF的垂直平分線,
∴FR=RP,
∴△PQR的周長=EF.
∵OE=OF=OP=10,且∠EOF=∠EOP+∠POF=2θ+2(30°-θ)=60°,
∴△EOF是正三角形,∴EF=10,
即在保持OP=10的條件下△PQR的最小周長為10.
故答案為:10.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C三點在同一直線上,分別以AB,BC(AB>BC)為邊,在直線AC的同側(cè)作等邊ΔABD和等邊ΔBCE,連接AE交BD于點M,連接CD交BE于點N,連接MN. 以下結(jié)論:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等邊三角形.其中正確的是__________(把所有正確的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABE中,∠BAE=105°,AE的垂直平分線MN交BE于點C,且AB=CE,則∠B的度數(shù)是( )
A. 45°B. 60°C. 50°D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中.
(1)若點E、F分別在AB、AD上,且AE=DF.試判斷DE與CF的數(shù)量及位置關(guān)系,并說明理由;
(2)若P、Q、M、N是正方形ABCD各邊上的點,PQ與MN相交,且PQ=MN,問PQ⊥MN成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求PQ的長.
(2)當(dāng)點Q在邊BC上運動時,出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)當(dāng)點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點 E.
(1)求證:DE=CE.
(2)若∠CDE=25°,求∠A 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形MNPQ放置在矩形ABCD中,使點M,N分別在AB,AD邊上滑動,若MN=6,PN=4,在滑動過程中,點A與點P的距離AP的最大值為( 。
A. 4 B. 2 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學(xué)校實際,需購進(jìn)電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,該校有幾種購買方案?
(3)上面的哪種方案費用最低?按費用最低方案購買需要多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:BD為的直徑,O為圓心,點A為圓上一點,過點B作的切線交DA的延長線于點F,點C為上一點,且,連接BC交AD于點E,連接AC.
如圖1,求證:;
如圖2,點H為內(nèi)部一點,連接OH,CH若時,求證:;
在的條件下,若,的半徑為10,求CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com