【題目】如圖所示,已知中,,BD、CE分別平分和,BD、CE交于點(diǎn)O.
求證:BE+CD=BC.
【答案】見(jiàn)解析.
【解析】
在BC上取點(diǎn)G使得CG=CD,可證△COD≌△COG,得∠BOG=∠BOE,然后證△BOE≌△BOG,得BE=BG,可以求得BE+CD=BC.
解:在BC上取點(diǎn)G使得CG=CD,
∵∠BOC=180°(∠ABC+∠ACB)=180°(180°60°)=120°,
∴∠BOE=∠COD=60°,
∵在△COD和△COG中,,
∴△COD≌△COG(SAS),
∴∠COG=∠COD=60°,
∴∠BOG=120°60°=60°=∠BOE,
∵在△BOE和△BOG中,,
∴△BOE≌△BOG(ASA),
∴BE=BG,
∴BE+CD=BG+CG=BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,邊長(zhǎng)為2的正方形中,是對(duì)角線(xiàn)上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)、不重合),過(guò)點(diǎn)作,交射線(xiàn)于點(diǎn),過(guò)點(diǎn)作,垂足為點(diǎn).
(1)求證::
(2)在點(diǎn)的運(yùn)動(dòng)過(guò)程中,的長(zhǎng)度是否發(fā)生變化?若不變,試求出這個(gè)不變的值,寫(xiě)出解答過(guò)程:若變化,試說(shuō)明理由:
(3)在點(diǎn)的運(yùn)動(dòng)過(guò)程中,能否為等腰三角形?如果能,直接寫(xiě)出此時(shí)的長(zhǎng);如果不能,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東66.1°方向,距離燈塔120海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向上的B處,求BP和BA的長(zhǎng)(結(jié)果取整數(shù)).
參考數(shù)據(jù):sin66.1°≈0.91,cos66.1°≈0.41,tan64°≈2.26,取1.414.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(﹣3,4),點(diǎn)C在x軸的正半軸上,直線(xiàn)AC交y軸于點(diǎn)M,AB邊交y軸于點(diǎn)H,連接BM.
(1)菱形ABCO的邊長(zhǎng)
(2)求直線(xiàn)AC的解析式;
(3)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線(xiàn)ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,
①當(dāng)0<t<時(shí),求S與t之間的函數(shù)關(guān)系式;
②在點(diǎn)P運(yùn)動(dòng)過(guò)程中,當(dāng)S=3,請(qǐng)直接寫(xiě)出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖中的折線(xiàn)表示某汽車(chē)的耗油量(單位:)與速度(單位:)之間的函數(shù)關(guān)系(),已知線(xiàn)段表示的函數(shù)關(guān)系中,該汽車(chē)的速度每增加,耗油量增加.
(1) 當(dāng)速度為、時(shí),該汽車(chē)的耗油量分別為_(kāi)____、____;
(2) 速度是多少時(shí),該汽車(chē)的耗油量最低?最低是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,M是AB中點(diǎn),,
(1)在AE、EF、FB中是否總有最大的線(xiàn)段?若有,是哪一條?
(2)AE、EF、FB能否構(gòu)成直角三角形?若能,請(qǐng)加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知⊙O的半徑為1,PQ是⊙O的直徑,n個(gè)相同的正三角形沿PQ排成一列,所有正三角形都關(guān)于PQ對(duì)稱(chēng),其中第一個(gè)△A1B1C1的頂點(diǎn)A1與點(diǎn)P重合,第二個(gè)△A2B2C2的頂點(diǎn)A2是B1C1與PQ的交點(diǎn)……最后一個(gè)△AnBnCn的頂點(diǎn)Bn,Cn在圓上.
(1)如圖②,當(dāng)n=1時(shí),求正三角形的邊長(zhǎng)a1.
(2)如圖③,當(dāng)n=2時(shí),求正三角形的邊長(zhǎng)a2.
(3)如圖①,求正三角形的邊長(zhǎng)an(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:AB是⊙O的直徑,AC交⊙O于G,E是AG上一點(diǎn),D為△BCE內(nèi)心,BE交AD于F,且∠DBE=∠BAD.
(1)求證:BC是⊙O的切線(xiàn);
(2)求證:DF=DG;
(3)若∠ADG=45°,DF=1,則有兩個(gè)結(jié)論:①ADBD的值不變;②AD-BD的值不變,其中有且只有一個(gè)結(jié)論正確,請(qǐng)選擇正確的結(jié)論,證明并求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)軸正半軸上的任意一點(diǎn),作軸的平行線(xiàn),分別與反比例函數(shù)和的圖象交于點(diǎn)和點(diǎn),點(diǎn)是軸上一點(diǎn),連接、,則的面積為( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com