【題目】小明想利用所學知識測量一公園門前熱氣球直徑的大小,如圖,當熱氣球升到某一位置時,小明在點A處測得熱氣球底部點C、中部點D的仰角分別為50°和60°,已知點O為熱氣球中心,EAAB,OBABOBOD,點COB上,AB30m,且點EA、B、O、D在同一平面內,根據(jù)以上提供的信息,求熱氣球的直徑約為多少米?(精確到0.1m

(參考數(shù)據(jù):sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192

【答案】熱氣球的直徑約為11.9米.

【解析】

E點作EFOBF,過D點作DGEFG.在RtCEF中,根據(jù)三角函數(shù)得到CF,在RtDEG中,根據(jù)三角函數(shù)得到,設熱氣球的直徑為x米,得到關于x的方程,解方程即可求解.

如圖,

E點作EFOBF,過D點作DGEFG

RtCEF中,CFEFtan50°=ABtan50°=35.76m,

RtDEG中,DGEGtan60°=,

設熱氣球的直徑為x米,則

解得x11.9

故熱氣球的直徑約為11.9米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y1ax2bxcab,c為常數(shù))的圖象如圖所示,若y1y22,則下列關于函數(shù)y2的圖象與性質描述正確的是:( )

A.函數(shù)y2的圖象開口向上

B.函數(shù)y2的圖象與x軸沒有公共點

C.x2時,y2x的增大而減小

D.x1時,函數(shù)y2的值小于0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形ABCD中,EBC邊上一點,連接AE,作AE的垂直平分線交ABG,交CDF,若BG2BE,則DFCF的長為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓的半徑OC=2,線段BC與CD是半圓的兩條弦,BC=CD,延長CD交直徑BA的延長線于點E,若AE=2,則弦BD的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為8,OAD上一個定點,A0=5,P從點A出發(fā),以每秒1個單位長的速度,按照A-B-C-D的方向,在正方形的邊上運動,設運動的時間為1 (),t的值為________時, AOP是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列3×3網格圖都是由9個相同的小正方形組成,每個網格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:

(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形;

(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形;

(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.

(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,矩形ABOC的邊BO,CO分別在x軸,y軸上,A點的坐標為(﹣8,6),點P在矩形ABOC的內部,點EBO邊上,滿足△PBE∽△CBO,當△APC是等腰三角形時,P點坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于,兩點,與軸交于點

1)求拋物線的解析式;

2)如圖1,拋物線的對稱軸交拋物線于點,在軸上是否存在點,使得的周長最小?若存在,求出點坐標;若不存在,請說明理由;

3)如圖2,點為直線上方拋物線上的動點,于點,求線段的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線經過點,對稱軸是直線,頂點為點,拋物線與軸交于點

1)求拋物線的表達式和點的坐標;

2)將上述拋物線向下平移個單位,平移后的拋物線與軸正半軸交于點,求的面積;

3)如果點在原拋物線上,且在對稱軸的右側,聯(lián)結交線段于點,,求點的坐標.

查看答案和解析>>

同步練習冊答案