【題目】如圖,在平面直角坐標系中,點的坐標為,以線段為邊在第四象限內(nèi)作等邊三角形,點正半軸上一動點, 連接,以線段為邊在第四象限內(nèi)作等邊三角形,連接并延長,交軸于點

(1)求證

(2)在點的運動過程中,的度數(shù)是否會變化?如果不變,請求出的度數(shù);如果變化,請說明理由

(3)當點運動到什么位置時,以為頂點的三角形是等腰三角形?

【答案】詳見解析的度數(shù)不會變化,;當點運動到時.

【解析】

1)根據(jù)等邊三角形的性質(zhì)可得BO=BABC=BD,∠OBA=CBD=60°,進而可利用SAS證明;

2)設(shè)BC、DE交于點F,如圖1,根據(jù)全等三角形的性質(zhì)可得∠1=2,根據(jù)三角形的內(nèi)角和定理可得∠CAD=CBD,進而可得結(jié)論;

3)易求得∠EAC120°,∠OEA30°,即得以A,E,C為頂點的三角形是等腰三角形時,AEAC是腰,然后根據(jù)30°角的直角三角形的性質(zhì)可得AE的長,進而可得AC、OC的長,即可得出點C的位置.

解:(1)證明:∵△AOB、△BCD是等邊三角形,

BO=BA,BC=BD,∠OBA=CBD=60°,

∴∠OBC=ABD,

SAS);

2)設(shè)BCDE交于點F,如圖1,

,∴∠1=2,

∵∠AFC=BFD,∴∠CAD=CBD=60°

的度數(shù)不會變化,且;

3)∵,∴∠EAC120°,∠OAE60°,∴∠OEA30°

∴以A,E,C為頂點的三角形是等腰三角形時,AEAC是腰,

∵在RtAOE中,OA1,∠OEA30°,∴AE2,

ACAE2,∴OC1+23,

∴當點C的坐標為(30)時,以A,E,C為頂點的三角形是等腰三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】2011山東濟南,279分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D

1)求拋物線的函數(shù)表達式;

2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m△CPQ的面積為S

S關(guān)于m的函數(shù)表達式,并求出m為何值時,S取得最大值;

S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.

(1)求此反比例函數(shù)的表達式;

(2)若點P在x軸上,且SACP=SBOC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。

(1)如圖1,若△ABC為直角三角形,求的值;

(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標;

(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過A(1,0),B(0,2)兩點,頂點為D.

(1)求拋物線的解析式;

(2)將OAB繞點A順時針旋轉(zhuǎn)90°后,點B落到點C的位置,將拋物線沿y軸平移后經(jīng)過點C,求平移后所得圖象的函數(shù)關(guān)系式;

(3)設(shè)(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足NBB1的面積是NDD1面積的2倍,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將沿著過中點的直線折疊,使點落在邊上的處,稱為第1次操作,折痕的距離記為,還原紙片后,再將沿著過中點的直線折疊,使點落在邊上的處,稱為第2次操作,折痕的距離記為,按上述方法不斷操作下去…經(jīng)過第2020次操作后得到的折痕的距離記為,若,則的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體(  )

A. 主視圖改變,俯視圖改變 B. 左視圖改變,俯視圖改變

C. 俯視圖不變,左視圖改變 D. 主視圖不變,左視圖不變

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市計劃購進一批甲、乙兩種玩具,已知件甲種玩具的進價與件乙種玩具的進價的和為元,件甲種玩具的進價與件乙種玩具的進價的和為元.

1)求每件甲種、乙種玩具的進價分別是多少元;

2)如果購進甲種玩具有優(yōu)惠,優(yōu)惠方法是:購進甲種玩具超過件,超出部分可以享受折優(yōu)惠,若購進件甲種玩具需要花費元,請你寫出的函數(shù)表達式.

查看答案和解析>>

同步練習冊答案