【題目】某日上午點鐘,市氣象局測得在城市正東方向處點有一臺風(fēng)中心正在以千米/時的速度沿西偏北的方向迅速移動(如圖所示).據(jù)資料表明,在距離臺風(fēng)中心范圍內(nèi)為嚴重影響區(qū)域(假定臺風(fēng)中心移動方向不變,影響力不變).(參考數(shù)據(jù):,).
(1)市會不會受這次臺風(fēng)的嚴重影響,為什么;
(2)如果市會受嚴重影響,那么這次臺風(fēng)對市嚴重影響多長時間?
(3)市規(guī)定臺風(fēng)嚴重影響前一小時向市民發(fā)出預(yù)警警報.如果市會受這次臺風(fēng)嚴重影響,那么市應(yīng)在幾點鐘發(fā)出預(yù)警警報?
【答案】(1)會受到臺風(fēng)影響;(2)1小時7分12秒;(3)A市應(yīng)該在9點發(fā)布警報.
【解析】
(1)A市受影響與否取決于A到BC的距離;
(2)A市受影響的時間實際上是A點在臺風(fēng)影響的圓的范圍內(nèi)的時間,也就是求這段時間內(nèi)臺風(fēng)中心移動的距離.通過構(gòu)建直角三角形來解出這段距離;
(3)解答此題就是要求出,臺風(fēng)第一次影響A市時,臺風(fēng)從B到E用了多長時間,也就是求BE的長(如圖2).
解:過作于,
在中,,,
,
∴,
因此市會受到臺風(fēng)的影響.
如圖所示,臺風(fēng)中心從到時,市受影響,
,
已知風(fēng)速為千米/小時,那么影響的時間是小時分秒.
在中,
,
,
,因此市應(yīng)該在點發(fā)布警報.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)要印制期末考試卷,甲印刷廠提出:每套試卷收0.6元印刷費,另收400元制版費;乙印刷廠提出:每套試卷收1元印刷費,不再收取制版費.
(1)分別寫出兩個廠的收費y(元)與印刷數(shù)量x(套)之間的函數(shù)關(guān)系式;
(2)請在上面的直角坐標系中分別作出(1)中兩個函數(shù)的圖象;
(3)若學(xué)校有學(xué)生2000人,為保證每個學(xué)生均有試卷,則學(xué)校至少要付出印刷費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊三角形ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),連接AF,BE相交于點P.
(1)若AE=CF;
①求證:AF=BE,并求∠APB的度數(shù);
②若AE=2,試求APAF的值;
(2)若AF=BE,當(dāng)點E從點A運動到點C時,試求點P經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量被池塘隔開的、兩點之間的距離,根據(jù)實際情況,作出如圖所示的圖形,其中,,交于,在上.有四位同學(xué)分別測量出以下四組數(shù)據(jù):①,; ②,,;③,,;④,,.根據(jù)所測數(shù)據(jù),能出,間距離的有________(填上所有能求出、間距離的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形是由兩個小正方形和兩個小長方形組成的,根據(jù)圖形解答下列問題:
(1)請用兩種不同的方法表示正方形的面積,并寫成一個等式;
(2)運用(1)中的等式,解決以下問題:
①已知,,求的值;
②已知,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長度比梯子底端B離墻的距離大5米.
(1)這個云梯的底端B離墻多遠?
(2)如圖(2),如果梯子的頂端下滑了8m(AC的長),那么梯子的底部在水平方向右滑動了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,切點為B,OC相交于點D,且CD=2,BC=4,
(1)求⊙O的半徑;
(2)連接AD并延長,交BC于點E,取BE的中點F,連接DF,試判斷DF與⊙O的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中AC=BC,∠ACB=90°,以BC為直徑作⊙O,連接OA,交⊙O于點D,過D點作⊙O的切線交AC于點E,連接B、D并延長交AC于點F.則下列結(jié)論錯誤的是( )
A. △ADE∽△ACO B. △AOC∽△BFC
C. △DEF∽△DOC D. CD2=DFDB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD中,AB=4,E為CD邊中點,F為AD邊中點,AE交BD于G,交BF于H,連接DH.
(1)求證:BG=2DG;
(2)求AH:HG:GE的值;
(3)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com