【題目】在中,點、分別在邊、上,根據(jù)下列給定的條件,不能判斷與平行的是( )
A.,,,B.,,,
C.,,D.,,,
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:對于拋物線y=ax2+bx+c(a、b、c是常數(shù),a≠0),若b2=ac,則稱該拋物線為黃金拋物線.例如:y=x2﹣x+1是黃金拋物線
(1)請再寫出一個與上例不同的黃金拋物線的解析式;
(2)將黃金拋物線y=x2﹣x+1沿對稱軸向下平移3個單位
①直接寫出平移后的新拋物線的解析式;
②新拋物線如圖所示,與x軸交于A、B(A在B的左側),與y軸交于C,點P是直線BC下方的拋物線上一動點,連結PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
③當直線BC下方的拋物線上動點P運動到什么位置時,四邊形 OBPC的面積最大并求出此時P點的坐標和四邊形OBPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中, ,,,點是斜邊的中點,以點為頂點作,射線、分別交邊、于點、.
特例
(1)如圖1,若,不添加輔助線,圖1中所有與相似的三角形為 , ;
操作探究:
(2)將(1)中的從圖1的位置開始繞點按逆時針方向旋轉,得到,如圖2,當射線,分別交邊、于點、時,求的值;
拓展延伸:
(3)如圖3,中,,,,點是斜邊的中點,以點為頂點作,射線、分別交邊、的延長線于點、,則的值為 .(用含、的代數(shù)式表示,直接回答即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學報名參加校運動會,有以下5個項目可供選擇:徑賽項目:100m,200m,分別用、、表示;田賽項目:跳遠,跳高分別用、表示.
該同學從5個項目中任選一個,恰好是田賽項目的概率為______;
該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結果,并求恰好是一個田賽項目和一個徑賽項目的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的對稱軸是直線x=1,與x軸有兩個交點,與y軸交點的坐標為(0,3),把它向下平移2個單位后,得到新的拋物線的解析式是y=ax2+bx+c,以下四個結論:①b2-4ac<0;②abc<0;③4a+2b+c=1;④a-b+c>0,其中正確的是
A.①②③B.②③④C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。
(1)當直線l與這個新圖象有且只有一個公共點時,d= ;
(2)當直線l與這個新圖象有且只有三個公共點時,求d的值;
(3)當直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;
(4)當直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某瓜果基地市場部為指導該基地某蔬菜的生產和銷售,在對歷年市場行情和生產情況進行調查的基礎上,對今年這種蔬菜上市后的市場售價和生產成本進行預測,提供了兩個方面的信息,如下圖所示,請你根據(jù)圖像提供的信息說明:
(1)在3月份出售這種蔬菜,每千克的收益是多少元?
(2)哪個月出售這種蔬菜,每千克的收益最大?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠有一種材料,可加工甲、乙、丙三種型號機械配件共240件,廠方計劃由20個工人一天內加工完成,并要求每人只加工一種配件,根據(jù)下表提供的信息,解答下列問題:
配件種類 | 甲 | 乙 | 丙 |
每人可加工配件的數(shù)量(個) | 16 | 12 | 10 |
每個配件獲利(元) | 6 | 8 | 5 |
(1)設加工甲種配件的人數(shù)為x,加工乙種配件的人數(shù)為y,求y與x之間的函數(shù)關系式
(2)如果加工每種配件的人數(shù)均不少于3人,那么加工配件的人數(shù)安排方案有幾種?并寫出每種安排方案
(3)要使此次加工配件的利潤最大,應采用哪種方案?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com