【題目】綜合與實(shí)踐

問題情境

數(shù)學(xué)活動(dòng)課上,老師讓同學(xué)們根據(jù)如下問題情境,發(fā)現(xiàn)并提出問題.

如圖1,ABCEDC都是等腰直角三角形,點(diǎn)E,D分別在ACBC上,連接EB.將線段EB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到的對(duì)應(yīng)線段為BF.連接DF.“興趣小組”提出了如下兩個(gè)問題:①AE=BD,AEBD;②DF=ABDFAB

解決問題:

1)請(qǐng)你證明“興趣小組”提出的第②個(gè)問題.

探索發(fā)現(xiàn):

2)“實(shí)踐小組”在圖1的基礎(chǔ)上,將EDC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)角度90°),其它條件保持不變,得到圖2

①請(qǐng)你幫助“實(shí)踐小組”探索:“興趣小組”提出的兩個(gè)問題是否還成立?如果成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由.

②如圖3,當(dāng)AD=AF時(shí),請(qǐng)求出此時(shí)旋轉(zhuǎn)角α的大小.

【答案】1)見解析;(2)①成立,見解析;②45°

【解析】

1)根據(jù)等腰直角三角形的性質(zhì)及線段的和差關(guān)系可得AE=DB,由旋轉(zhuǎn)的性質(zhì)可得∠EBF=90°,BE=BF,根據(jù)三角形外角性質(zhì)及角的和差關(guān)系可得∠AEB=DBF,利用SAS可證明△AEB≌△DBF,可得AB=DF,∠ABE=DFB,由∠ABE+ABF=90°可得∠DFB+ABF=90°,即可得出∠AQF=90°,可得ABDF;

2)①如圖,延長(zhǎng)AEBD交于點(diǎn)P,交BCO,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠ACE=DCB,利用SAS可證明△ACE≌△BCD,可得AE=BD,∠CAE=CBD,根據(jù)角的和差關(guān)系可得∠APB=90°,可得AEBD;根據(jù)三角形外角性質(zhì)及角的和差關(guān)系可得∠AEB=DBF,利用SAS可證明△AEB≌△DBF,可得AB=DF,∠ABE=DFB,由∠ABE+ABF=90°可得∠DFB+ABF=90°,即可得出∠AQF=90°,可得ABDF

②根據(jù)AD=AF,ABDF可得AB垂直平分DF,可得BD=BF=BE,利用SSS可證明△BEC≌△BDC,可得∠DCB=ECB=ECD=45°,根據(jù)旋轉(zhuǎn)的性質(zhì)可得α=DCB=45°

1)∵△ABC與△EDC為等腰直角三角形,

AC=BCEC=DC,

AE=DB

∵將線段EB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到的對(duì)應(yīng)線段為BF,

∴∠EBF=90°,BE=BF,

∵∠AEB=C+EBC,∠DBF=EBF+DBE,∠C=EBF=90°,

∴∠AEB=DBF

在△AEB和△DBF

∴△AEB≌△DBF,

AB=DF,∠ABE=DFB

∵∠ABE+ABF=90°,

∴∠DFB+ABF=90°,

∴∠AQF=90°,即ABDF

2)①如圖,延長(zhǎng)AEBD交于點(diǎn)P,交BCO,

∵將△EDC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)角度

∴∠ACE=DCB

在△ACE和△BCD,

∴△ACE≌△BCD,

AE=BD,∠CAE=CBD

∵∠AOC=BOP,∠AOC+CAO=90°,

∴∠CBD+BOP=90°,

∴∠APB=90°,即APBD

∵∠AEB=APB+EBD,∠DBF=EBF+DBE,∠APB=EBF=90°,

∴∠AEB=DBF

在△AEB和△DBF,

∴△AEB≌△DBF,

AB=DF,∠ABE=DFB

∵∠ABE+ABF=90°,

∴∠DFB+ABF=90°,

∴∠AQF=90°,即ABDF

②∵AD=AF,ABDF,

AB垂直平分DF

BD=BF=BE

在△BEC和△BDC,

∴△BEC≌△BDC,

∴∠DCB=ECB=ECD=45°

∴旋轉(zhuǎn)角α的大小是45°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】游樂園新建的一種新型水上滑道如圖,其中線段表示距離水面(x軸)高度為5m的平臺(tái)(點(diǎn)Py軸上).滑道可以看作反比例函數(shù)圖象的一部分,滑道可以看作是二次函數(shù)圖象的一部分,兩滑道的連接點(diǎn)B為二次函數(shù)的頂點(diǎn),且點(diǎn)B到水面的距離,點(diǎn)By軸的距離是5m.當(dāng)小明從上而下滑到點(diǎn)C時(shí),與水面的距離,與點(diǎn)B的水平距離.

1)求反比例函數(shù)的關(guān)系式及其自變量的取值范圍;

2)求整條滑道的水平距離;

3)若小明站在平臺(tái)上相距y的點(diǎn)M處,用水槍朝正前方向下“掃射”,水槍出水口N距離平臺(tái),噴出的水流成拋物線形,設(shè)這條拋物線的二次項(xiàng)系數(shù)為p,若水流最終落在滑道上(包括B、D兩點(diǎn)),直接寫出p的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過點(diǎn),直線x軸交于點(diǎn)

1)求的值;

2)過第二象限的點(diǎn)作平行于x軸的直線,交直線于點(diǎn)C,交函數(shù)的圖象于點(diǎn)D

①當(dāng)時(shí),判斷線段PDPC的數(shù)量關(guān)系,并說明理由;

②若,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】丁老師為了解所任教的兩個(gè)班的學(xué)生數(shù)學(xué)學(xué)習(xí)情況,對(duì)數(shù)學(xué)進(jìn)行了一次測(cè)試,獲得了兩個(gè)班的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理、描述和分析,下面給出了部分信息.①A、B兩班學(xué)生(兩個(gè)班的人數(shù)相同)數(shù)學(xué)成績(jī)不完整的頻數(shù)分布直方圖如下(數(shù)據(jù)分成 5 組:x60,60≤x70,70≤x8080≤x90,90≤x≤100):

A、B兩班學(xué)生測(cè)試成績(jī)?cè)?/span>80≤x90這一組的數(shù)據(jù)如下:

A 班:80 80 82 83 85 85 86 87 87 87 88 89 89

B 班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89

A、B兩班學(xué)生測(cè)試成績(jī)的平均數(shù)、中位數(shù)、方差如下:

平均數(shù)

中位數(shù)

方差

A

80.6

m

96.9

B

80.8

n

153.3

根據(jù)以上信息,請(qǐng)寫出表中 m、n的值____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在太原迎澤西大街上有一種智能垃圾桶,這種智能垃圾桶不僅可以供行人休息,燈箱邊的中部還有USB接口可供行人充電.此種垃圾桶的側(cè)面示意圖如圖所示,其中ACED,ABEFGH,CD=20cm,DE=60cmEF=100m,GH=80cm,∠CDE=EFG=90°,∠DEF=130°,則此種垃圾桶的高度(C到地面的距離)約為________cm.(參考數(shù)據(jù):sin40°≈0.64cos40°≈0.77,tan40°≈0.84

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0

(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,

(2)畫出將△ABC繞原點(diǎn)O按逆時(shí)針旋轉(zhuǎn)90°所得的△A2B2C2,

(3)△A1B1C1與△A2B2C2成軸對(duì)稱圖形嗎?若成軸對(duì)稱圖形,畫出所有的對(duì)稱軸并寫出對(duì)稱軸;

(4)△A1B1C1與△A2B2C2成中心對(duì)稱圖形嗎?若成中心對(duì)稱圖形,寫出所有的對(duì)稱中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在全國(guó)初中數(shù)學(xué)聯(lián)賽中,將參賽兩個(gè)班學(xué)生的成績(jī)(得分均為整數(shù))進(jìn)行整理后分成五組,繪制出如下的頻率分布直方圖(如圖所示),已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是025015、010、010,第二組的頻數(shù)是40

1)第二小組的頻率是_____,并補(bǔ)全這個(gè)頻率分布直方圖;

2)這兩個(gè)班參賽的學(xué)生人數(shù)是_________;

3)這兩個(gè)班參賽學(xué)生的成績(jī)的中位數(shù)落在第______組內(nèi).(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016423日是我國(guó)第一個(gè)“全民閱讀日”某校開展了“建設(shè)書香校園,捐贈(zèng)有益圖書”活動(dòng).我們?cè)趨⒓踊顒?dòng)的所有班級(jí)中,隨機(jī)抽取了一個(gè)班,已知這個(gè)班是八年級(jí)5班,全班共50名學(xué)生.現(xiàn)將該班捐贈(zèng)圖書情況的統(tǒng)計(jì)結(jié)果,繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)以上信息,解答下列問題:

1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

2)求八年級(jí)5班平均每人捐贈(zèng)了多少本書?

3)若該校八年級(jí)共有800名學(xué)生,請(qǐng)你估算這個(gè)年級(jí)學(xué)生共可捐贈(zèng)多少本書?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個(gè)問題:

如圖1,ABC中,∠ACB=90°,點(diǎn)DAB上,且∠BAC=2DCB,求證:AC=AD.

小明發(fā)現(xiàn),除了直接用角度計(jì)算的方法外,還可以用下面兩種方法:

方法1:如圖2,作AE平分∠CAB,與CD相交于點(diǎn)E.

方法2:如圖3,作∠DCF=DCB,與AB相交于點(diǎn)F.

(1)根據(jù)閱讀材料,任選一種方法,證明AC=AD.

用學(xué)過的知識(shí)或參考小明的方法,解決下面的問題:

(2)如圖4,ABC中,點(diǎn)DAB上,點(diǎn)EBC上,且∠BDE=2ABC,點(diǎn)FBD上,且∠AFE=BAC,延長(zhǎng)DC、FE,相交于點(diǎn)G,且∠DGF=BDE.

①在圖中找出與∠DEF相等的角,并加以證明;

②若AB=kDF,猜想線段DEDB的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案