【題目】如圖,二次函數(shù)y=ax2+bx+c(a0)圖象與x軸交于A,B兩點,與y軸交于C點,且對稱軸為x=1,點B坐標(biāo)為(10).則下面的四個結(jié)論:

abc0;②8a+c0;b24ac0;當(dāng)y0時,x<﹣1x2

其中正確的有(  )

A.4B.3C.2D.1

【答案】C

【解析】

根據(jù)二次函數(shù)的圖象和二次函數(shù)的性質(zhì),可以判斷各個小題中的結(jié)論是否成立,從而可以解答本題.

①函數(shù)的對稱軸在y軸右側(cè),則ab0,而c0,故abc0,故原答案錯誤,不符合題意;

②函數(shù)的對稱軸為:x1,故b=2a,對稱軸為x=1,點B坐標(biāo)為(1,0),則點A(3,0),故9a+3b+c=0,而b=2a,即3a+c=0,a0,故8a+c0,正確,符合題意;

③拋物線和x軸有兩個交點,故b24ac0正確,符合題意;

④點B坐標(biāo)為(1,0),點A(3,0),則當(dāng)y0時,x<﹣1x3.故錯誤,不符合題意.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)直線l1yx+1x軸交于點A,直線l2y=﹣x+3x軸交于點B,l1l2交于點C,直線l3過線段AB的中點和點C,求直線l3的解析式;

2)已知平面直角坐標(biāo)系中,直線l經(jīng)過點P2,1)且與雙曲線y交于AB不同兩點,問是否存在這樣的直線l,使得點P恰好為線段AB的中點,若存在,求出直線l的解析式,若不存在,請說明理由;

3)若Ax1y1)、Bx2y2)是拋物線y4x2上的不同兩點(y1≠y2),線段AB的垂直平分線與y軸交于點P,與線段AB交于點Mxm,ym),則稱線段AB為點P的一條相關(guān)弦,若點P的坐標(biāo)為(0,a)時(a為常數(shù)),證明點P相關(guān)弦中點M的縱坐標(biāo)相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次活動共調(diào)查了   人;在扇形統(tǒng)計圖中,表示支付寶支付的扇形圓心角的度數(shù)為   

(2)將條形統(tǒng)計圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,中,,點上,,點分別在邊、上移動,則的周長的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)“綜合與實踐”小組的同學(xué)把“測量大橋斜拉索頂端到橋面的距離”作為一項課題活動,他們制訂了測量方案,并利用課余時間借助該橋斜拉索完成了實地測量.測量結(jié)果如下表.

項目

內(nèi)容

課題

測量斜拉索頂端到橋面的距離

測量示意圖

說明:大橋兩側(cè)一組斜拉索ACBC相交于點C,分別與橋面交于AB兩點,且點A,B,C在同一豎直平面內(nèi).

測量數(shù)據(jù)

A的度數(shù)

B的度數(shù)

AB的長度

45°

30°

240

請幫助該小組根據(jù)上表中的測量數(shù)據(jù),求斜拉索頂端點CAB的距離.(結(jié)果精確到0.1米)(參考數(shù)據(jù):1.414,1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+n(m0)的圖象與反比例函數(shù)y(k0)的圖象交于第一、三象限內(nèi)的A、B兩點,與y軸交于點C,過點BBMx軸,垂足為點M,BM=OM=2,點A的縱坐標(biāo)為4

1)求該反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)根據(jù)圖象直接寫出當(dāng)mx+n時,x的取值范圍;

3)直線ABx軸于點D,過點D作直線lx軸,如果直線l上存在點P,坐標(biāo)平面內(nèi)存在點Q,使以OP、AQ為頂點的四邊形是矩形,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班13位同學(xué)參加每周一次的衛(wèi)生大掃除,按學(xué)校的衛(wèi)生要求需要完成總面積為60m2的三個項目的任務(wù),三個項目的面積比例和每人每分鐘完成各所示:項目的工作量如圖:

1)從統(tǒng)計圖中可知:擦玻璃的面積占總面積的百分比為   ,每人每分鐘擦課桌椅   m2;

2)掃地拖地的面積是   m2

3)他們一起完成掃地和拖地任務(wù)后,把這13人分成兩組,一組去擦玻璃,一組去擦課桌椅,如果你是衛(wèi)生委員,該如何分配這兩組的人數(shù),才能最快地完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6E,F分別是AB、BC邊上的點,且∠EDF=45°,將DAE繞點D逆時針旋轉(zhuǎn)90°,得到DCM

(1)求證:EF=MF

(2)AE=2,求FC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一只箱子沿著斜面向上運動,箱高AB1.3cm,當(dāng)BC2.6m時,點B離地面的距離BE1m,則此時點A離地面的距離是(

A.2.2mB.2mC.1.8mD.1.6m

查看答案和解析>>

同步練習(xí)冊答案