【題目】設(shè)函數(shù)f(x)= ,則滿足f(f(m))=3f(m)的實(shí)數(shù)m的取值范圍是( )
A.(﹣∞,0)∪{﹣ }
B.[0,1]
C.[0,+∞)∪{﹣ }
D.[1,+∞)
【答案】C
【解析】解:令t=f(m),即有f(t)=3t , 當(dāng)t<1時(shí),2t+1=3t∈(0,3),即為﹣ <t<1,
設(shè)g(t)=2t+1﹣3t , 令g(t)=0,可得t=0,
由f(m)=2m+1=0,可得m=﹣ ;
當(dāng)t≥1時(shí),f(t)=3t ,
若2m+1≥1,且m<1,解得0≤m<1;
若3m≥1,且m≥1,解得m≥1,
可得m≥0.
綜上可得,m的范圍是[0,+∞)∪{﹣ }.
故選C.
令t=f(m),即有f(t)=3t , 當(dāng)t<1時(shí),2t+1=3t , 解得t=0,進(jìn)而求得m的值;當(dāng)t≥1時(shí),f(t)=3t , 討論m的范圍,結(jié)合指數(shù)函數(shù)的單調(diào)性可得m的范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓Γ: 經(jīng)過點(diǎn) ,且離心率為 .
(1)求橢圓Γ的方程;
(2)直線l與圓O:x2+y2=b2相切于點(diǎn)M,且與橢圓Γ相交于不同的兩點(diǎn)A,B,求|AB|的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,E為A1C1的中點(diǎn),
(Ⅰ)證明:CE⊥平面AB1C1;
(Ⅱ)若AA1= ,∠BAC=30°,求點(diǎn)E到平面AB1C的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直四棱柱ABCD﹣A1B1C1D1內(nèi)接于半徑為 的半球O,四邊形ABCD為正方形,則該四棱柱的體積最大時(shí),AB的長是( )
A.1
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓E:(x+ )2+y2=16,點(diǎn)F( ,0),P是圓E上任意一點(diǎn),線段PF的垂直平分線和半徑PE相交于Q.(Ⅰ)求動點(diǎn)Q的軌跡E的方程; (Ⅱ)直線l過點(diǎn)(1,1),且與軌跡Γ交于A,B兩點(diǎn),點(diǎn)M滿足 = ,點(diǎn)O為坐標(biāo)原點(diǎn),延長線段OM與軌跡Γ交于點(diǎn)R,四邊形OARB能否為平行四邊形?若能,求出此時(shí)直線l的方程,若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) . (Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c.已知 ,a=2, ,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有五人五錢,令上二人所得與下三人等.問各得幾何?”其意思為:“現(xiàn)有甲乙丙丁戊五人依次差值等額分五錢,要使甲乙兩人所得的錢與丙丁戊三人所得的錢相等,問每人各得多少錢?”根據(jù)題意,乙得( )
A. 錢
B. 錢
C.1錢
D. 錢
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生利用雙休時(shí)間去距學(xué)校10km的炎帝故里參觀,一部分學(xué)生騎自行車先走,過了20min后,其余學(xué)生乘汽車沿相同路線出發(fā),結(jié)果他們同時(shí)到達(dá).已知汽車的速度是騎車學(xué)生速度的2倍,求騎車學(xué)生的速度和汽車的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旭日商場銷售A,B兩種品牌的鋼琴,這兩種鋼琴的進(jìn)價(jià)和售價(jià)如下表所示:
A | B | |
進(jìn)價(jià)(萬元/.套) | 1.5 | 1.2 |
售價(jià)(萬元/套) | 1.65 | 1.4 |
該商場計(jì)劃購進(jìn)兩種鋼琴若干套,共需66萬元,全部銷售后可獲毛利潤9萬元.(毛利潤=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場計(jì)劃購進(jìn)A,B兩種品牌的鋼琴各多少套?
(2)通過市場調(diào)查,該商場決定在原計(jì)劃的基礎(chǔ)上,減少A種鋼琴的購進(jìn)數(shù)量,增加B種鋼琴的購進(jìn)數(shù)量,已知B種鋼琴增加的數(shù)量是A種鋼琴減少數(shù)量的1.5倍,若用于購進(jìn)這兩種鋼琴的總資金不超過69萬元,問A種鋼琴購進(jìn)數(shù)量至多或減少多少套?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com