【題目】材料一:把一個自然數(shù)的個位數(shù)字截去,再用余下的數(shù)減去個位數(shù)的2倍,如果差是7的倍數(shù),則原數(shù)能被7整除.如果差太大不易看出是否7的倍數(shù),可重復(fù)上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止.例如,判斷392是否7的倍數(shù)的過程如下:,,所以,3927的倍數(shù);又例如判斷8638是否7的倍數(shù)的過程如下:,所以,86387的倍數(shù).

材料二:若一個四位自然數(shù)n滿足千位與個位相同,百位與十位相同,我們稱這個數(shù)為對稱數(shù).將對稱數(shù)n的前兩位與后兩位交換位置得到一個新的對稱數(shù),記,例如

(1)請用材料一的方法判斷6909367能不能被7整除;

(2)m、p對稱數(shù)”,其中,,ab,c均為整數(shù)),若m能被7整除,且,求p

【答案】(1)見解析;(2)

【解析】

(1)根據(jù)能被7整除的數(shù)的特征即可求解;
(2)m能被7整除,根據(jù)材料一可知:能被7整除,

即可求出,根據(jù),進而求出,表示出根據(jù),得到,分類討論即可.

(1) ,,,所以,69097的倍數(shù);

,,所以,367不是7的倍數(shù);

(2) m能被7整除

能被7整除

,∴

當(dāng)時,,

當(dāng)時,,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分10已知A-4,2,B2,-4是一次函數(shù)y=kx+b的圖象和反比例函數(shù) y =圖象的兩個交點

1求反比例函數(shù)和一次函數(shù)的表達式;

2將一次函數(shù)y=kx+b的圖象沿y軸向上平移n個單位長度,交y軸于點C,若SABC=12,求n的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,ECD上一點,BEACF,連接DF.

(1)證明:∠BAC=∠DAC.

(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】,圖都是4×6的正方形網(wǎng)格,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1.在圖,圖中已畫出線段AB,且點A,B均在格點上.

1)在圖中以AB為對角線畫出一個矩形,使矩形的另外兩個頂點也在格點上,且所畫的矩形不是正方形;

2)在圖中以AB為對角線畫出一個菱形,使菱形的另外兩個頂點也在格點上,且所畫的菱形不是正方形;

3)圖中所畫的矩形的面積為   ;圖中所畫的菱形的周長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一超市從一樓到二樓有一自動扶梯,圖2是側(cè)面示意圖.已知自動扶梯AB的坡度為12.4,AB的長度是13米,MN是二樓樓頂,MNPQ,CMN上處在自動扶梯頂端B點正上方的一點,BCMN,在自動扶梯底端A處測得C點的仰角為37°,則二樓的層高BC約為(精確到0.1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)( 。

1 2

A. 4 B. 3.6 C. 2.2 D. 4.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司大門出口處有一自動感應(yīng)欄桿,點A是欄桿轉(zhuǎn)動的支點,當(dāng)車輛經(jīng)過時,欄桿AE會自動升起,某天早上,欄桿發(fā)生故障,在某個位置突然卡住,這時測得欄桿升起的角度∠BAE=127°,已知ABBC,支架AB1.2米,大門BC打開的寬度為2米,這時一輛長寬高分別為(4600 mm、1700 mm、1400 mm)的汽車能否順利通過?(欄桿寬度,汽車反光鏡忽略不計,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(﹣1,0)、B(2,﹣3)兩點在一次函數(shù)y1=﹣x+m與二次函數(shù)y2ax2+bx﹣3的圖象上.

(1)求m的值和二次函數(shù)的解析式;

(2)請直接寫出使y1y2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣5,1),B(﹣2,2),C(﹣1,4),請按下列要求畫圖:

1)將△ABC先向右平移4個單位長度、再向下平移1個單位長度,得到△A1B1C1,畫出△A1B1C1

2)畫出與△ABC關(guān)于原點O成中心對稱的△A2B2C2,并直接寫出點A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水庫大壩的橫截面是如圖所示的四邊形BACD,期中ABCD.瞭望臺PC正前方水面上有兩艘漁船M、N,觀察員在瞭望臺頂端P處觀測漁船M的俯角,觀測漁船N在俯角,已知NM所在直線與PC所在直線垂直,垂足為點E,PE長為30米.

1)求兩漁船M,N之間的距離(結(jié)果精確到1米);

2)已知壩高24米,壩長100米,背水坡AD的坡度.為提高大壩防洪能力,某施工隊在大壩的背水坡填筑土石方加固,加固后壩定加寬3米,背水坡FH的坡度為,施工12天后,為盡快完成加固任務(wù),施工隊增加了機械設(shè)備,工作效率提高到原來的15倍,結(jié)果比原計劃提前20天完成加固任務(wù),施工隊原計劃平均每天填筑土石方多少立方米?(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案