【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,ABC的頂點均在格點上,請按要求完成下列各題.

1)以原點O為對稱中心作ABC的中心對稱圖形,得到A1B1C1,請畫出A1B1C1,并直接寫出點A1,B1C1的坐標;

2)求出ABC的面積.

【答案】1)如圖,△A1B1C1為所作,見詳解;點A1B1,C1的坐標分別為(1,﹣1),(1,4),(32);(2)△ABC的面積為3

【解析】

1)作出△ABC各點關(guān)于原點的對稱點,再順次連接即可;根據(jù)平面直角坐標系寫出A1,B1,C1三點的坐標即可.

2)利用三角形面積公式求面積即可.

1)如圖,△A1B1C1為所作,點A1,B1C1的坐標分別為(1,﹣1),(14),(32);

2)△ABC的面積=×2×33

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(-42)、B(n,-4)是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點.

(1) 求反比例函數(shù)和一次函數(shù)的解析式;

(2) 根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的面積是12,,點,分別在邊,上,在邊上依次作了個全等的小正方形,,,,則每個小正方形的邊長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】截長補短法,是初中幾何題中一種添加輔助線的方法,也是把幾何題化難為易的一種策略.截長就是在長邊上截取一條線段與某一短邊相等,補短就是通過延長或旋轉(zhuǎn)等方式使兩條短邊拼合到一起,從而解決問題.

1)如圖1,ABC是等邊三角形,D是邊BC下方一點,BDC=120°,探索線段DADB、DC之間的數(shù)量關(guān)系.

解題思路:將△ABD繞點A逆時針旋轉(zhuǎn)60°得到△ACE,可得AE=AD, CE=BD,∠ABD=ACE,DAE=60°,根據(jù)∠BAC+BDC=180°,可知∠ABD+ACD=180°, ACE+ACD=180°,易知△ADE是等邊三角形,所以AD=DE,從而解決問題.

根據(jù)上述解題思路,三條線段DA、DBDC之間的等量關(guān)系是___________;

2)如圖2,RtABC,BAC=90°,AB=AC.點D是邊BC下方一點,BDC=90°,探索三條線段DA、DBDC之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線a、bc是常數(shù), )與直線都經(jīng)過軸上的一點P,且拋物線L的頂點Q在直線上,則稱此直線與該拋物線L具有“一帶一路”關(guān)系,此時,直線叫做拋物線L的“帶線”,拋物線L叫做直線的“路線”

(1)若直線與拋物線具有“一帶一路”關(guān)系,求m、n的值

(2)若某“路線”L的頂點在反比例函數(shù)的圖象上,它的“帶線” 的解析式為,求此路的解析式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x22x1

1)求此函數(shù)圖象的頂點A以及它與y軸交點B的坐標.

2)求此函數(shù)圖象與x軸的交點CD的坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB經(jīng)過圓心O ,交⊙O于點C

1)尺規(guī)作圖:在AB上方的圓弧上找一點D,使得ABD是以AB為底邊的等腰三角形(保留作圖痕跡);

2)在(1)的條件下,若∠DAB=30°,求證:直線BD與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC5BC6,點DE分別在AB,BC上,將△ABC沿直線DE折疊,點B落在AC的中點B處,則BE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】制作一種產(chǎn)品,需先將材料加熱達到60 ℃后,再進行操作.設(shè)該材料溫度為y),從加熱開始計算的時間為xmin).據(jù)了解,當該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系;停止加熱進行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達到60 ℃

1)分別求出將材料加熱和停止加熱進行操作時,yx的函數(shù)關(guān)系式;

2)根據(jù)工藝要求,當材料的溫度低于15 ℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?

查看答案和解析>>

同步練習冊答案