【題目】在平面直角坐標系中,拋物線yx2的圖象如圖所示.已知A點坐標為(1,1),過點AAA1x軸交拋物線于點A1,過點A1A1A2OA交拋物線于點A2,過點A2A2A3x軸交拋物線于點A3,過點A3A3A4OA交拋物線于點A4……,依次進行下去,則點A2019的坐標為_______

【答案】(-1010,10102)

【解析】

根據(jù)二次函數(shù)性質(zhì)可得出點A1的坐標,求得直線A1A2y=x+2,聯(lián)立方程求得A2的坐標,即可求得A3的坐標,同理求得A4的坐標,即可求得A5的坐標,根據(jù)坐標的變化找出變化規(guī)律,即可找出點A2019的坐標.

A點坐標為(1,1),
∴直線OAy=x,A1-11),
A1A2OA,
∴直線A1A2y=x+2,
,
A224),
A3-2,4),
A3A4OA,
∴直線A3A4y=x+6,
,
A43,9),
A5-3,9
,
A2019-1010,10102),
故答案為(-1010,10102).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,, 是邊上一動點(不與重合),=于點,,則線段的最大值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,以O(shè)為圓心,OA為半徑的圓交AB于點D,延長AO交⊙O于點E,連接CD、CE,若CE是⊙O的切線.

(1)求證:CD是⊙O的切線;

(2)若⊙O的半徑為4,OC=7,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點、、分別在邊、上,聯(lián)結(jié)、,且,那么下列說法錯誤的是(

A.如果,那么

B.如果,那么

C.如果,那么

D.如果,那么

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線yx2+mx+n經(jīng)過點B6,1),C5,0),且與y軸交于點A

1)求拋物線的表達式及點A的坐標;

2)點Py軸右側(cè)拋物線上的一點,過點PPQOA,交線段OA的延長線于點Q,如果∠PAB45°.求證:△PQA∽△ACB;

3)若點F是線段AB(不包含端點)上的一點,且點F關(guān)于AC的對稱點F′恰好在上述拋物線上,求FF′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BM是以AB為直徑的⊙O的切線,B為切點,BC平分∠ABM,弦CDAB于點E,DEOE

1)求證:ACB是等腰直角三角形;

2)求證:OA2OEDC

3)求tanACD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按擬定的價格進行試銷,通過對5天的試銷情況進行統(tǒng)計,得到如下數(shù)據(jù):

(1)通過對上面表格中的數(shù)據(jù)進行分析,發(fā)現(xiàn)銷量y(件)與單價(元/件)之間存在一次函數(shù)關(guān)系,求y關(guān)于的函數(shù)關(guān)系式(不需要寫出函數(shù)自變量的取值范圍);

(2)預(yù)計在今后的銷售中,銷量與單價仍然存在(2)中的關(guān)系,且該產(chǎn)品的成本是20元/件.為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少?

(3)為保證產(chǎn)品在實際試銷中銷售量不得低于30件,且工廠獲得得利潤不得低于400元,請直接寫出單價的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC 中,∠BAC90°,AD BC 邊上的中線,點 E AD 的中點,過點 A AFBC BE 的延長線于點 F,連接 CF

1)求證:ADAF;

2)填空:當∠ACB °時,四邊形 ADCF 為正方形;

連接 DF,當∠ACB °時,四邊形 ABDF 為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,函數(shù))的圖象經(jīng)過點,ABx軸于點B,點C與點A關(guān)于原點O對稱, CDx軸于點D,ABD的面積為8.

(1)求m,n的值;

(2)若直線k≠0)經(jīng)過點C,且與x軸,y軸的交點分別為點E,F,當時,求點F的坐標.

查看答案和解析>>

同步練習(xí)冊答案