【題目】如圖,BM是以AB為直徑的⊙O的切線,B為切點(diǎn),BC平分∠ABM,弦CD交AB于點(diǎn)E,DE=OE.
(1)求證:△ACB是等腰直角三角形;
(2)求證:OA2=OEDC:
(3)求tan∠ACD的值.
【答案】(1)證明見解析;(2)證明見解析;(3)tan∠ACD=2﹣.
【解析】
(1)根據(jù)BM為切線,BC平分∠ABM,求得∠ABC的度數(shù),再由直徑所對(duì)的圓周角為直角,即可求證;
(2)根據(jù)三角形相似的判定定理證明三角形相似,再由相似三角形對(duì)應(yīng)邊成比例,即可求證;
(3)由圖得到∠ACD=∠ABD,根據(jù)各個(gè)角之間的關(guān)系求出∠AFD的度數(shù),用AD表達(dá)出其它邊的邊長(zhǎng),再代入正切公式即可求得.
(1)∵BM是以AB為直徑的⊙O的切線,
∴∠ABM=90°,
∵BC平分∠ABM,
∴∠ABC=∠ABM=45°
∵AB是直徑
∴∠ACB=90°,
∴∠CAB=∠CBA=45°
∴AC=BC
∴△ACB是等腰直角三角形;
(2)如圖,連接OD,OC
∵DE=EO,DO=CO
∴∠EDO=∠EOD,∠EDO=∠OCD
∴∠EDO=∠EDO,∠EOD=∠OCD
∴△EDO∽△ODC
∴
∴OD2=DEDC
∴OA2=DEDC=EODC
(3)如圖,連接BD,AD,DO,作∠BAF=∠DBA,交BD于點(diǎn)F,
∵DO=BO
∴∠ODB=∠OBD,
∴∠AOD=2∠ODB=∠EDO,
∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,
∴∠ODB=15°=∠OBD
∵∠BAF=∠DBA=15°
∴AF=BF,∠AFD=30°
∵AB是直徑
∴∠ADB=90°
∴AF=2AD,DF=AD
∴BD=DF+BF=AD+2AD
∴tan∠ACD=tan∠ABD===2﹣
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,C為半圓上一點(diǎn),AC<BC.
(1)請(qǐng)用直尺(不含刻度)與圓規(guī)在BC上作一點(diǎn)D,使得直線OD平分ABC的周長(zhǎng);(不要求寫作法,但要保留作圖痕跡)
(2)在(1)的條件下,若AB=10,OD=,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,.將矩形沿折疊,使點(diǎn)落在邊中點(diǎn)處,點(diǎn)落在處.連接,以矩形對(duì)稱中心為圓心的圓與相切于點(diǎn),則圓的半徑為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形AOB的圓心角為直角,邊長(zhǎng)為1的正方形ODCF的頂點(diǎn)F,D,C分別在OA,OB,上,過點(diǎn)B作BE⊥FC,交FC的延長(zhǎng)線于點(diǎn)E,則圖中陰影部分的面積等于__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校某數(shù)學(xué)興趣小組想測(cè)學(xué)校旗桿高度如圖,明明在稻香園一樓點(diǎn)測(cè)得旗桿頂點(diǎn)仰角為,在稻香園二樓點(diǎn)測(cè)得點(diǎn)的仰角為.明明從點(diǎn)朝旗桿方向步行米到點(diǎn),沿坡度的臺(tái)階走到點(diǎn),再向前走米到旗桿底部,已知稻香園高度為米,則旗桿的高度約為( )(參考數(shù)據(jù):,,)
A.米B.米C.米D.米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小魏探究學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖像與性質(zhì)進(jìn)行了研究,下面是小魏的探究過程,請(qǐng)補(bǔ)充完整.
(1)下表是與的幾組對(duì)應(yīng)值:
請(qǐng)直接寫出:_______,______,_______.
(2)畫出該函數(shù)圖像.
(3)寫出該函數(shù)的一條性質(zhì):_______________.
(4)一次函數(shù)與該函數(shù)圖像至少有三個(gè)交點(diǎn),則的范圍_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖像與反比例函數(shù)的圖像交于點(diǎn),與軸交于點(diǎn),若,且.
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)若點(diǎn)為軸上一點(diǎn),是等腰三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測(cè)試的成績(jī).測(cè)試規(guī)則為每次連續(xù)接球10個(gè),每墊球到位1個(gè)記1分.
運(yùn)動(dòng)員丙測(cè)試成績(jī)統(tǒng)計(jì)表
測(cè)試序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(jī)(分) | 7 | 6 | 8 | 7 | 5 | 8 | 8 | 7 |
運(yùn)動(dòng)員丙測(cè)試成績(jī)的平均數(shù)和眾數(shù)都是7,
(1)成績(jī)表中的__________,_________;
(2)若在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?請(qǐng)用你所學(xué)過的統(tǒng)計(jì)量加以分析說明(參考數(shù)據(jù):三人成績(jī)的方差分別為、、)
(3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個(gè)人的球都等可能的傳給其他兩人,球從乙手中傳出,球傳一次甲得到球的概率是____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com