【題目】如圖,在ABC中,BC=AC=5,AB=8,CDAB邊的高,點Ax軸上,點By軸上,點C在第一象限,若A從原點出發(fā),沿x軸向右以每秒1個單位長的速度運動,則點B隨之沿y軸下滑,并帶動ABC在平面內(nèi)滑動,設運動時間為t秒,當B到達原點時停止運動

(1)連接OC,線段OC的長隨t的變化而變化,當OC最大時,t____;

(2)當ABC的邊與坐標軸平行時,t____。

【答案】 t

【解析】試題解析:如圖:

三點共線時,取得最大值,

分兩種情況進行討論:①設 時,CAOA,

CAy軸,

∴∠CAD=ABO.

RtCADRtABO,

解得

②設時,

CBx軸,

RtBCDRtABO,

綜上可知,當以點C為圓心,CA為半徑的圓與坐標軸相切時,t的值為

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂直平分線交BC的延長線于點F

(1)求證:∠FAD=FDA;

(2)若∠B=50°,求∠CAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DB、C三點在同一條直線上,∠C=50°,∠FBC=80°.問:∠DBF的平分線BEAC有怎樣的位置關系?并說明理由.

解:BEAC一定平行.

∵D、BC三點在同一條直線上,

∴∠DBF+∠FBC=180° ).

∵∠FBC=80°(已知).

∴∠DBF=

∵BE平分∠DBF(已知).

).

∵∠C=50°(已知),

∴∠ =∠ ),

.(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形網(wǎng)格中,每個小正方形的邊長都為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將ABC平移后得△DEF,使點A的對應點為點D,點B的對應點為點E

(1)畫出△DEF;

(2)連接AD、BE,則線段ADBE的關系是

(3)求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M 達點B時,點MN同時停止運動,問點MN運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩班英語口語水平,每班隨機抽取了10名學生進行了口語測驗,測驗成績滿分為10分,參加測驗的10名學生成績(單位:分)稱為樣本數(shù)據(jù),抽樣調(diào)查過程如下:

收集數(shù)據(jù)

甲、乙兩班的樣本數(shù)據(jù)分別為:

甲班:6 7 9 4 6 7 6 9 6 10

乙班:7 8 9 7 5 7 8 5 9 5

整理和描述數(shù)據(jù)

規(guī)定了四個層次:9分以上(含9分)為優(yōu)秀”,8-9分(含8分)為良好”,6-8分(含6分)為一般”,6分以下(不含6分)為不合格。按以上層次分布繪制出如下的扇形統(tǒng)計圖。

請計算:(1)圖1中,不合格層次所占的百分比;

(2)圖2中,優(yōu)秀層次對應的圓心角的度數(shù)。

分析數(shù)據(jù)

對于甲、乙兩班的樣本數(shù)據(jù),請直接回答:

(1)甲班的平均數(shù)是7,中位數(shù)是_____;乙班的平均數(shù)是_____,中位數(shù)是7;

(2)從平均數(shù)和中位數(shù)看,____班整體成績更好。

解決問題

若甲班50人,乙班40人,通過計算,估計甲、乙兩班不合格層次的共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場經(jīng)銷一種商品,已知其每件進價為40元,F(xiàn)在每件售價為70元,每星期可賣出500件。該商場通過市場調(diào)查發(fā)現(xiàn):若每件漲價1元,則每星期少賣出10件;若每件降價1元,則每星期多賣出mm為正整數(shù))件。設調(diào)查價格后每星期的銷售利潤為W元。

(1)設該商品每件漲價xx為正整數(shù))元,

①若x=5,則每星期可賣出____件,每星期的銷售利潤為_____元;

②當x為何值時,W最大,W的最大值是多少。

(2)設該商品每件降價yy為正整數(shù))元,

①寫出WY的函數(shù)關系式,并通過計算判斷:當m=10時每星期銷售利潤能否達到(1)中W的最大值;

②若使y=10時,每星期的銷售利潤W最大,直接寫出W的最大值為_____。

(3)若每件降價5元時的每星期銷售利潤,不低于每件漲價15元時的每星期銷售利潤,求m的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,DOAB于點O,連接DA交⊙O于點C,過點C作⊙O的切線交DO于點E,連接BCDO于點F.

(1)求證:CE=EF;

(2)連接AF并延長,交⊙O于點G.填空:

①當∠D的度數(shù)為   時,四邊形ECFG為菱形;

②當∠D的度數(shù)為   時,四邊形ECOG為正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,若按圖中規(guī)律繼續(xù)下去,則∠1+2+n等于(  )

A. n·180° B. 2n·180° C. (n-1)·180° D. (n-1)2·180°

查看答案和解析>>

同步練習冊答案