【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.
(1)請(qǐng)判斷AB與CD的位置關(guān)系并說(shuō)明理由;
(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問(wèn)∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?
【答案】(1)AB∥CD.理由見(jiàn)解析;(2)∠BAE與∠MCD存在確定的數(shù)量關(guān)系:∠BAE+∠MCD=90°.
【解析】
(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180°,故可得出結(jié)論;
(2)過(guò)E作EF∥AB,根據(jù)平行線的性質(zhì)可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結(jié)論;
(1)AB∥CD.理由如下:
∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD;
(2)∠BAE與∠MCD存在確定的數(shù)量關(guān)系:∠BAE+ ∠MCD=90°.
理由如下:
過(guò)E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE
∵∠E=90°,
∴∠BAE+∠ECD=90°
∵∠MCE=∠ECD,
∴∠BAE+ ∠MCD=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,花叢中有一路燈桿AB. 在燈光下,小明在D點(diǎn)處的影長(zhǎng)DE=3米,沿BD方向行走到達(dá)G點(diǎn),DG=5米,這時(shí)小明的影長(zhǎng)GH=5米. 如果小明的身高為1.7米,求路燈桿AB的高度(精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一張三角形紙片如圖甲,其中將紙片沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)C落到AB邊上的E點(diǎn)處,折痕為如圖乙再將紙片沿過(guò)點(diǎn)E的直線折疊,點(diǎn)A恰好與點(diǎn)D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于,兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2) 請(qǐng)根據(jù)圖象直接寫(xiě)出時(shí)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一商場(chǎng)的推拉門(mén),已知門(mén)的寬度米,且兩扇門(mén)的大小相同(即),將左邊的門(mén)繞門(mén)軸向里面旋轉(zhuǎn),將右邊的門(mén)繞門(mén)軸向外面旋轉(zhuǎn),其示意圖如圖2,求此時(shí)與之間的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形中與交于點(diǎn),點(diǎn)在線段上,作直線交直線于,過(guò)作于,設(shè)直線交于.
(1)如圖,當(dāng)在線段上時(shí),求證:;
(2)如圖2,當(dāng)在線段上,連接,當(dāng)時(shí),求證:;
(3)在圖3,當(dāng)在線段上,連接,當(dāng)時(shí),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a是最大的負(fù)整數(shù),b、c滿足,且a,b,c分別是點(diǎn)A,B,C在數(shù)軸上對(duì)應(yīng)的數(shù).
(1)求a,b,c的值,并在數(shù)軸上標(biāo)出點(diǎn)A,B,C;
(2)若動(dòng)點(diǎn)P從C出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒2個(gè)單位長(zhǎng)度,運(yùn)動(dòng)幾秒后,點(diǎn)P到達(dá)B點(diǎn)?
(3)在數(shù)軸上找一點(diǎn)M,使點(diǎn)M到A,B,C三點(diǎn)的距離之和等于13,請(qǐng)直接寫(xiě)出所有點(diǎn)M對(duì)應(yīng)的數(shù).(不必說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,BA=BC,BD是△ABC的中線,△ABC的角平分線AE交BD于點(diǎn)F,過(guò)點(diǎn)C作AB的平行線交AE的延長(zhǎng)線于點(diǎn)G
(1)如圖1,若∠ABC=60°,求證:AF=EG;
(2)如圖2,若∠ABC=90°,求證:AF=EG;
(3)在(2)的條件下如圖3,過(guò)點(diǎn)A作∠CAH=∠FAC,過(guò)點(diǎn)B作BM∥AC交AG于點(diǎn)M,點(diǎn)N在AH上,連接MN、BN,若∠BMN+∠EAH=90°,,求BN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是BC邊的中點(diǎn),BD=2,tanB=.
(1)求AD和AB的長(zhǎng);
(2)求sin∠BAD的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com