【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖象交x軸于點A(1,0),B(3,0),交y軸于點C.
(1)求這個二次函數(shù)的表達(dá)式;
(2)點P是直線BC下方拋物線上的一動點,求△BCP面積的最大值;
(3)直線x=m分別交直線BC和拋物線于點M,N,當(dāng)△BMN是等腰三角形時,直接寫出m的值.
【答案】(1)這個二次函數(shù)的表達(dá)式是y=x2﹣4x+3;(2)S△BCP最大=;(3)當(dāng)△BMN是等腰三角形時,m的值為,﹣,1,2.
【解析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)平行于y軸直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PE的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;
(3)根據(jù)等腰三角形的定義,可得關(guān)于m的方程,根據(jù)解方程,可得答案.
(1)將A(1,0),B(3,0)代入函數(shù)解析式,得
,
解得,
這個二次函數(shù)的表達(dá)式是y=x2-4x+3;
(2)當(dāng)x=0時,y=3,即點C(0,3),
設(shè)BC的表達(dá)式為y=kx+b,將點B(3,0)點C(0,3)代入函數(shù)解析式,得
,
解這個方程組,得
直線BC的解析是為y=-x+3,
過點P作PE∥y軸
,
交直線BC于點E(t,-t+3),
PE=-t+3-(t2-4t+3)=-t2+3t,
∴S△BCP=S△BPE+SCPE=(-t2+3t)×3=-(t-)2+,
∵-<0,∴當(dāng)t=時,S△BCP最大=.
(3)M(m,-m+3),N(m,m2-4m+3)
MN=m2-3m,BM=|m-3|,
當(dāng)MN=BM時,①m2-3m=(m-3),解得m=,
②m2-3m=-(m-3),解得m=-
當(dāng)BN=MN時,∠NBM=∠BMN=45°,
m2-4m+3=0,解得m=1或m=3(舍)
當(dāng)BM=BN時,∠BMN=∠BNM=45°,
-(m2-4m+3)=-m+3,解得m=2或m=3(舍),
當(dāng)△BMN是等腰三角形時,m的值為,-,1,2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級學(xué)生的體質(zhì)健康狀況,隨機(jī)抽取了該校九年級學(xué)生的10%進(jìn)行測試,將這些學(xué)生的測試成績(x)分為四個等級:優(yōu)秀;良好;及格;不及格,并繪制成以下兩幅統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)在抽取的學(xué)生中不及格人數(shù)所占的百分比是______;
(2)計算所抽取學(xué)生測試成績的平均分;
(3)若不及格學(xué)生的人數(shù)為2人,請估算出該校九年級學(xué)生中優(yōu)秀等級的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,拋物線的頂點是A(1,3),將OA繞點O逆時針旋轉(zhuǎn)后得到OB,點B恰好在拋物線上,OB與拋物線的對稱軸交于點C.
(1)求拋物線的解析式;
(2)P是線段AC上一動點,且不與點A,C重合,過點P作平行于x軸的直線,與的邊分別交于M,N兩點,將以直線MN為對稱軸翻折,得到.
設(shè)點P的縱坐標(biāo)為m.
①當(dāng)在內(nèi)部時,求m的取值范圍;
②是否存在點P,使,若存在,求出滿足m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D,E,F分別在正三角形的三邊上,且也是正三角形.若的邊長為a,的邊長為b,則的內(nèi)切圓半徑為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線交x軸于A、B兩點,其中點A坐標(biāo)為,與y軸交于點C,且對稱軸在y軸的左側(cè),拋物線的頂點為P.
(1)當(dāng)時,求拋物線的頂點坐標(biāo);
(2)當(dāng)時,求b的值;
(3)在(1)的條件下,點Q為x軸下方拋物線上任意一點,點D是拋物線對稱軸與x軸的交點,直線、分別交拋物線的對稱軸于點M、N.請問是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年9月,我國中小學(xué)生迎來了新版“教育部統(tǒng)編義務(wù)教育語文教科書”,本次“統(tǒng)編本”教材最引人關(guān)注的變化之一是強(qiáng)調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展“最受歡迎的傳統(tǒng)文化經(jīng)典著作”調(diào)查,隨機(jī)調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:
(1)本次一共調(diào)查了 名學(xué)生;
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)某班語文老師想從這四大名著中隨機(jī)選取兩部作為學(xué)生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生對網(wǎng)上在線學(xué)習(xí)效果的滿意度,某校設(shè)置了:非常滿意、滿意、基本滿意、不滿意四個選項,隨機(jī)抽查了部分學(xué)生,要求每名學(xué)生都只選其中的一項,并將抽查結(jié)果繪制成如圖統(tǒng)計圖(不完整).
請根據(jù)圖中信息解答下列問題:
(1)求被抽查的學(xué)生人數(shù),并補(bǔ)全條形統(tǒng)計圖;(溫馨提示:請畫在答題卷相對應(yīng)的圖上)
(2)求扇形統(tǒng)計圖中表示“滿意”的扇形的圓心角度數(shù);
(3)若該校共有1000名學(xué)生參與網(wǎng)上在線學(xué)習(xí),根據(jù)抽查結(jié)果,試估計該校對學(xué)習(xí)效果的滿意度是“非常滿意”或“滿意”的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①abc<0;②4ac<b2;③方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;④3a+c>0;⑤當(dāng)y≥0時,x的取值范圍是﹣1≤x≤3.其中結(jié)論正確的個數(shù)是( )
A. 1個B. 2個C. 3D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,∠CAB的平分線AD交于點D,過點D作DE∥BC交AC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)過點D作DF⊥AB于點F,連接BD.若OF=1,BF=2,求BD的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com