【題目】在矩形中,的角平分線交于點(diǎn)的角平分線交于點(diǎn),若,,則的長(zhǎng)為(

A.B.C.D.

【答案】D

【解析】

先延長(zhǎng)EFBC,交于點(diǎn)G,再根據(jù)條件可以判斷三角形ABE為等腰直角三角形,并求得其斜邊BE的長(zhǎng),然后根據(jù)條件判斷三角形BEG為等腰三角形,最后根據(jù)△EFD∽△GFC得出CGDE的倍數(shù)關(guān)系,并根據(jù)BGBCCG進(jìn)行計(jì)算即可.

延長(zhǎng)EFBC,交于點(diǎn)G,

3DF4FC,

,

∵矩形ABCD中,∠ABC的角平分線BEAD交于點(diǎn)E

∴∠ABE=∠AEB45°,

ABAE7,

∴直角三角形ABE中,BE,

又∵∠BED的角平分線EFDC交于點(diǎn)F,

∴∠BEG=∠DEF,

ADBC

∴∠G=∠DEF,

∴∠BEG=∠G

BGBE,

∵∠G=∠DEF,∠EFD=∠GFC,

∴△EFD∽△GFC,

,

設(shè)CG3xDE4x,則AD74xBC,

BGBCCG

74x3x7,

解得x1

BC74x74434,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ABC90°,

1)如圖1,分別過A,C兩點(diǎn)作經(jīng)過點(diǎn)B的直線的垂線,垂足分別為M、N,求證:ABMBCN;

2)如圖2,P是邊BC上一點(diǎn),∠BAP=∠C,PMPAAC于點(diǎn)M,求的值;

3)如圖3,D是邊CA延長(zhǎng)線上一點(diǎn),AEAB,∠DEB90°,ADBCAC235,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)將進(jìn)貨價(jià)為30元的臺(tái)燈以40元的價(jià)格售出,平均每月能售出600個(gè),經(jīng)調(diào)查表明,這種臺(tái)燈的售價(jià)每上漲1元,其銷量就減少10個(gè),市場(chǎng)規(guī)定此臺(tái)燈售價(jià)不得超過60元,為了實(shí)現(xiàn)銷售這種臺(tái)燈平均每月10000元的銷售利潤(rùn),售價(jià)應(yīng)定為多少元?這時(shí)售出臺(tái)燈多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,3),拋物線Gy=x22x+c(c為常數(shù))的頂點(diǎn)坐標(biāo)為M,其對(duì)稱軸與x軸相交于點(diǎn)N

(1)若拋物線G經(jīng)過點(diǎn)A,求出其解析式,并寫出點(diǎn)M的坐標(biāo).

(2)若點(diǎn)B(x1,y1)和點(diǎn)C(x1+3,y2)在拋物線G上,試比較y1,y2的大小.

(3)連接OM,若45°≤∠MON≤60°,請(qǐng)直接寫出c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中, ,以邊的中點(diǎn)為圓心,作半圓與相切,點(diǎn)分別是邊和半圓上的動(dòng)點(diǎn),連接,長(zhǎng)的最大值與最小值的和是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)任意一個(gè)三位數(shù),如果滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個(gè)數(shù)為相異數(shù)”.將一個(gè)相異數(shù)任意兩個(gè)數(shù)位上的數(shù)字對(duì)調(diào)后可以得到三個(gè)不同的新三位數(shù),把這三個(gè)新三位數(shù)的和與111的商記為.例如,對(duì)調(diào)百位與十位上的數(shù)字得到213,對(duì)調(diào)百位與個(gè)位上的數(shù)字得到321,對(duì)調(diào)十位與個(gè)位上的數(shù)字得到132,這三個(gè)新三位數(shù)的和,,所以.

1)計(jì)算:,;

2)小明在計(jì)算時(shí)發(fā)現(xiàn)幾個(gè)結(jié)果都為正整數(shù),小明猜想所有的均為正整數(shù),你覺得這個(gè)猜想正確嗎?請(qǐng)判斷并說明理由;

3)若都是相異數(shù),其中,,、都是正整數(shù)),當(dāng)時(shí),求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠C=Rt∠,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB、BC分別交于點(diǎn)E、D,則AE的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程有兩個(gè)實(shí)數(shù)根x1,x2

1)求實(shí)數(shù)k的取值范圍;

2)是否存在實(shí)數(shù)k使得成立?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)D是等腰直角ABC的重心,其中ACB=90°,將線段CD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到線段CE,連結(jié)DE,若ABC的周長(zhǎng)為6,則DCE的周長(zhǎng)為( 。

A. 2 B. 2 C. 4 D. 3

查看答案和解析>>

同步練習(xí)冊(cè)答案