平面直角坐標(biāo)系中點(diǎn)(2,-5)所在的象限是………………………………… ( 。
A.第一象限 B.第二象限 C.第三象限 D.第四象限
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如下圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn), △ABC的頂點(diǎn)均在格點(diǎn)上.
(1)畫(huà)出將△ABC向右平移2個(gè)單位后得到的△A1B1C1,再畫(huà)出將△A1B1C1繞點(diǎn)B1按逆時(shí)針?lè)较蛐D(zhuǎn)90°后所得到的△A2B1C2;
(2)求線段B1C1旋轉(zhuǎn)到B1C2的過(guò)程中,點(diǎn)C1所經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一組數(shù)據(jù)5,2,x,6,4的平均數(shù)是4,這組數(shù)據(jù)的方差是…………………… ( 。
A.2 B. C.10 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在1、2、3、4、5這五個(gè)數(shù)中,先任意取一個(gè)數(shù)a,然后在余下的數(shù)中任意取出一個(gè)數(shù)b,組成一個(gè)點(diǎn)(a,b).求組成的點(diǎn)(a,b)恰好橫坐標(biāo)為偶數(shù)且縱坐標(biāo)為奇數(shù)的概率.(請(qǐng)用“畫(huà)樹(shù)狀圖”或“列表”等方法寫(xiě)出分析過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
邊長(zhǎng)為2的正方形OABC在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)D是邊OA的中點(diǎn),連接CD,點(diǎn)E在第一象限,且DE⊥DC,DE=DC. 以直線AB為對(duì)稱軸的拋物線過(guò)C,E兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P從點(diǎn)C出發(fā),沿射線CB以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
過(guò)點(diǎn)P作PF⊥CD于點(diǎn)F. 當(dāng)t為何值時(shí),以點(diǎn)P,F,D為頂點(diǎn)的三角形與△COD
相似?
(3)點(diǎn)M為直線AB上一動(dòng)點(diǎn),點(diǎn)N為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)M、N,使得以點(diǎn)
M、N、D、E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出滿足條件的點(diǎn) M、N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系中,點(diǎn)P在由直線y=-x+3,直線y=4和直線x=1所圍成的區(qū)域內(nèi)或其邊界上,點(diǎn)Q在x軸上,若點(diǎn)R的坐標(biāo)為(2,2),則QP+QR的最小值為( )
A. B.+2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(3,2)、(-1,0),若將線段BA繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BA',則點(diǎn)A'的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com