如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過C作CD⊥AB于點D,CD交AE于點F,過C作CG∥AE交BA的延長線于點G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的長.
【答案】分析:(1)連結OC,由C是劣弧AE的中點,根據(jù)垂徑定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根據(jù)切線的判定定理即可得到結論;
(2)連結AC、BC,根據(jù)圓周角定理得∠ACB=90°,∠B=∠1,而CD⊥AB,則∠CDB=90°,根據(jù)等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF;
(3)在Rt△ADF中,由于∠DAF=30°,F(xiàn)A=FC=2,根據(jù)含30度的直角三角形三邊的關系得到DF=1,AD=,再由AF∥CG,根據(jù)平行線分線段成比例得到DA:AG=DF:CF
然后把DF=1,AD=,CF=2代入計算即可.
解答:(1)證明:連結OC,如圖,
∵C是劣弧AE的中點,
∴OC⊥AE,
∵CG∥AE,
∴CG⊥OC,
∴CG是⊙O的切線;

(2)證明:連結AC、BC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠2+∠BCD=90°,
而CD⊥AB,
∴∠B+∠BCD=90°,
∴∠B=∠2,
∵AC弧=CE弧,
∴∠1=∠B,
∴∠1=∠2,
∴AF=CF;

(3)解:在Rt△ADF中,∠DAF=30°,F(xiàn)A=FC=2,
∴DF=AF=1,
∴AD=DF=,
∵AF∥CG,
∴DA:AG=DF:CF,即:AG=1:2,
∴AG=2
點評:本題考查了圓的切線的判定:過半徑的外端點與半徑垂直的直線為圓的切線.也考查了圓周角定理、垂徑定理和等腰三角形的判定.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,AD是弦,∠DBC=∠A.
(1)求證:BC與⊙O相切;
(2)若OC∥AD,OC交BD于點E,BD=6,CE=4,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,AD是弦,∠DBC=∠A,OC⊥BD于點E.
(1)求證:BC是⊙O的切線;
(2)若BD=12,EC=10,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,弦CD⊥AB于點P,CD=10cm,AP:PB=1:5,則⊙O的半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O直徑,OD⊥弦BC于點F,且交⊙O于點E,且∠AEC=∠ODB.
(1)判斷直線BD和⊙O的位置關系,并給出證明;
(2)當AB=10,BC=8時,求△DFB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,AB是⊙O直徑,∠D=35°,則∠BOC等于( 。

查看答案和解析>>

同步練習冊答案