【題目】已知BC∥OA,∠B=∠A=100°,試回答下列問題:
(1)如圖①所示,試說明OB∥AC;
(2)如圖②,若點E,F在BC上,且滿足∠FOC=∠AOC,并且OE平分∠BOF.則∠EOC的度數(shù)等于________(在橫線上填上答案即可);
(3)在(2)的條件下,若平行移動AC,如圖③,那么∠OCB∶∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值;
(4)在(3)的條件下,在平行移動AC的過程中,若使∠OEB=∠OCA,此時∠OCA的度數(shù)等于________(在橫線上填上答案即可).
【答案】 見解析 40° (3) 1∶2.(4) 60°
【解析】試題分析:(1)由BC∥OA得∠B+∠O=180°,所以∠O=180°-∠B=80°,則∠A+∠O=180°,根據平行線的判定即可得到OB∥AC;
(2)由OE平分∠BOF得到∠BOE=∠FOE,加上∠FOC=∠AOC,所以∠EOF+∠COF=∠AOB=40°;
(3)由BC∥OA得到OCB=∠AOC,∠OFB=∠AOF,加上∠FOC=∠AOC,則∠AOF=2∠AOC,所以∠OFB=2∠OCB,
(4)設∠AOC的度數(shù)為x,則∠OFB=2x,根據平行線的性質得∠OEB=∠AOE,則∠OEB=∠EOC+∠AOC=40°+x,再根據三角形內角和定理得∠OCA=180°-∠AOC-∠A=80°-x,利用∠OEB=∠OCA得到40°+x=80°-x,解得x=20°,所以∠OCA=80°-x=60°.
試題解析:(1)∵BC∥OA,
∴∠B+∠O=180°,
∵∠A=∠B,
∴∠A+∠O=180°,
∴OB∥AC;
(2)∵∠A=∠B=100°,由(1)得∠BOA=180°-∠B=80°,
∵∠FOC=∠AOC,OE平分∠BOF,
∴∠EOF=∠BOF,∠FOC=∠FOA,
∴∠EOC=∠EOF+∠FOC= (∠BOF+∠FOA)=∠BOA=40°,
故答案為:40°;
(3)∠OCB∶∠OFB的值不發(fā)生變化,理由如下:
∵BC∥OA,
∴∠OFB=∠FOA,∠OCB=∠AOC.
∵∠FOC=∠AOC,
∴∠FOC=∠OCB,
∴∠OFB=∠FOA=∠FOC+∠AOC=2∠OCB,
∴∠OCB∶∠OFB=1∶2;
(4)由(1)知OB∥AC,
∴∠OCA=∠BOC,由(2)可設∠BOE=∠EOF=α,∠FOC=∠AOC=β,
∴∠OCA=∠BOC=2α+β,∵BC∥OA,
∴∠OEB=∠EOA=α+2β,
∵∠OEB=∠OCA,
∴2α+β=α+2β,
∴α=β,
∵∠AOB=80°,
∴α=β=20°,
∴∠OCA=2α+β=40°+20°=60°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+5的圖象過A(﹣1,0),B(5,0)兩點,與y軸交于點C,作直線BC,動點P從點C出發(fā),以每秒個單位長度的速度沿CB向點B運動,運動時間為t秒,當點P與點B重合時停止運動.
(1)求拋物線的表達式;
(2)如圖2,當t=1時,若點Q是X軸上的一個動點,如果以Q,P,B為頂點的三角形與△ABC相似,求出Q點的坐標;
(3)如圖3,過點P向x軸作垂線分別交x軸,拋物線于E、F兩點.
①求PF的長度關于t的函數(shù)表達式,并求出PF的長度的最大值;
②連接BF,將△PBF沿BF折疊得到△P′BF,當t為何值時,四邊形PFP′B是菱形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】保護生態(tài)環(huán)境,建設綠色社會已經從理念變?yōu)槿藗兊男袆樱郴S2009年1 月的利潤為200萬元.設2009年1 月為第1個月,第x個月的利潤為y萬元.由于排污超標,該廠決定從2009年1 月底起適當限產,并投入資金進行治污改造,導致月利潤明顯下降,從1月到5月,y與x成反比例.到5月底,治污改造工程順利完工,從這時起,該廠每月的利潤比前一個月增加20萬元(如圖).
⑴分別求該化工廠治污期間及治污改造工程完工后y與x之間對應的函數(shù)關系式.
⑵治污改造工程完工后經過幾個月,該廠月利潤才能達到2009年1月的水平?
⑶當月利潤少于100萬元時為該廠資金緊張期,問該廠資金緊張期共有幾個月?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)、如圖(1),AB∥CD,點P在AB、CD外部,若∠B=40°,∠D=15°,則∠BPD °.
(2)、如圖(2),AB∥CD,點P在AB、CD內部,則∠B,∠BPD,∠D之間有何數(shù)量關系?證明你的結論;
(3)、在圖(2)中,將直線AB繞點B按逆時針方向旋轉一定角度交直線CD于點M,如圖(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥EF,則∠A、∠C、∠D、∠E滿足的數(shù)量關系是( )
A. ∠A+∠C+∠D+∠E=360°
B. ∠A+∠D=∠C+∠E
C. ∠A-∠C+∠D+∠E=180°
D. ∠E-∠C+∠D-∠A=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有公路l1同側、l2異側的兩個城鎮(zhèn)A,B,電信部門要在S區(qū)修建一座信號發(fā)射塔,按照設計要求,發(fā)射塔到兩個城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應修建在什么位置?請用尺規(guī)作圖找出所有符合條件的點,注明點C的位置.(保留作圖痕跡,不寫作法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=BC=AC=12cm,現(xiàn)有兩點M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為1cm/s,點N的速度為2cm/s.當點N第一次到達B點時,M、N同時停止運動.
(1)點M、N運動幾秒后,M、N兩點重合?
(2)點M、N運動幾秒后,可得到等邊三角形△AMN?
(3)當點M、N在BC邊上運動時,能否得到以MN為底邊的等腰三角形?如存在,請求出此時M、N運動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)中日釣魚島爭端持續(xù),我海監(jiān)船加大釣魚島附近海域的巡航維權力度.如圖,OA⊥OB,OA=36海里,OB=12海里,釣魚島位于O點,我國海監(jiān)船在點B處發(fā)現(xiàn)有一不明國籍的漁船,自A點出發(fā)沿著AO方向勻速駛向釣魚島所在地點O,我國海監(jiān)船立即從B處出發(fā)以相同的速度沿某直線去攔截這艘漁船,結果在點C處截住了漁船.
(1)請用直尺和圓規(guī)作出C處的位置;
(2)求我國海監(jiān)船行駛的航程BC的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com