【題目】如圖,反比例函數(shù)的圖象過點A(2,3).
(1)求反比例函數(shù)的解析式;
(2)過A點作AC⊥x軸,垂足為C.若P是反比例函數(shù)圖象上的一點,求當(dāng)△PAC的面積等于6時,點P的坐標(biāo).
【答案】(1) y=;(2)(6,1),(﹣2,﹣3).
【解析】
(1)把點A的坐標(biāo)代入反比例函數(shù)解析式,列出關(guān)于系數(shù)m的方程,通過解方程來求m的值;
(2)設(shè)點P的坐標(biāo)是(a,),然后根據(jù)三角形的面積公式來求點P的坐標(biāo).
解:(1)設(shè)反比例函數(shù)為y=,
∵反比例函數(shù)的圖象過點A(2,3).則=3,解得m=6.
故該反比例函數(shù)的解析式為y=;
(2)設(shè)點P的坐標(biāo)是(a,).
∵A(2,3),
∴AC=3,OC=2.
∵△PAC的面積等于6,
∴×AC×|a﹣2|=6,
解得:|a﹣2|=4,
∴a1=6,a2=﹣2,
∴點P的坐標(biāo)是(6,1),(﹣2,﹣3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量一個鐵球的直徑,將該鐵球放入工件槽內(nèi),測得的有關(guān)數(shù)據(jù)如圖所示(單位:cm),則該鐵球的直徑為( )
A.12 cmB.10 cmC.8 cmD.6 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖a,AB為⊙O直徑,AC為⊙O的為弦,PA為⊙O的切線,∠APC=2∠1.
(1)求證:PC是⊙O的切線.
(2)當(dāng)∠1=30°,AB=4時,其他條件不變,求圖b中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是直徑AB上的一點,AB=6,CP⊥AB交半圓于點C,以BC為直角邊構(gòu)造等腰Rt△BCD,∠BCD=90°,連接OD.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對線段AP,BC,OD的長度之間的關(guān)系進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)對于點P在AB上的不同位置,畫圖、測量,得到了線段AP,BC,OD的長度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置… | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | … |
BC | 6.00 | 5.48 | 4.90 | 4.24 | 3.46 | 2.45 | … |
OD | 6.71 | 7.24 | 7.07 | 6.71 | 6.16 | 5.33 | … |
在AP,BC,OD的長度這三個量中,確定________的長度是自變量,________的長度和________的長度都是這個自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)OD=2BC時,線段AP的長度約為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.利用一面墻(墻的長度不限),用20m的籬笆圍成一個矩形場地ABCD.設(shè)矩形與墻垂直的一邊AB=xm,矩形的面積為Sm2.
(1)用含x的式子表示S;
(2)若面積S=48m2,求AB的長;
(3)能圍成S=60m2的矩形嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D、E是△ABC中AB邊上的點,△CDE是等邊三角形,∠ACB=120°,則下列結(jié)論中錯誤的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,AB⊥AD,BC∥AD,E為AB的中點,且EC、ED分別為∠BCD、∠ADC的角平分線,EF⊥CD交BC的延長線于點G,連接DG.
(1)求證:CE⊥DE;
(2)若AB=6,求CF·DF的值;
(3)當(dāng)△BCE與△DFG相似時,的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里,裝有若干個完全相同的A、B、C三種球,其中A球x個,B球x個,C球(x+1)個.若從中任意摸出一個球是A球的概率為0.25.
(1)這個袋中A、B、C三種球各多少個?
(2)若小明從口袋中隨機(jī)模出1個球后不放回,再隨機(jī)摸出1個.請你用畫樹狀圖的方法求小明摸到1個A球和1個C球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程ax2+bx+1=0中,b=;
(1)若a=4,求b的值;
(2)若方程ax2+bx+1=0有兩個相等的實數(shù)根,求方程的根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com