【題目】如圖,在平面直角坐標系中,有一,且,,,已知是由旋轉得到的.
請寫出旋轉中心的坐標是________,旋轉角是________度;
設線段所在直線表達式為,試求出當滿足什么要求時,;
點在軸上,點在直線上,要使以、、、為頂點的四邊形是平行四邊形,求所有滿足條件點的坐標.
【答案】(1)(0,0),90;(2)當x>﹣1.5時,y>2; (3)(-1.5,2),(-3.5,2),(-0.5,4).
【解析】
(1)根據(jù)網(wǎng)格結構,找出對應點連線的垂直平分線的交點即為旋轉中心,一對對應點與旋轉中心連線的夾角即為旋轉角;
(2)先根據(jù)A、B兩點在坐標系內的坐標,利用待定系數(shù)法求出線段AB所在直線的解析式,再根據(jù)y>2求出x的取值范圍即可;
(3)要使以Q、P、A1、C1為頂點的四邊形是平行四邊形,則PQ=A1C1=2,在直線AB上到x軸的距離等于2 的點,就是P點,因此令y=2或-2求得x的值即可.
(1)旋轉中心的坐標是(0,0),旋轉角是90度;
(2)∵由圖可知A(1,3),B(3,1),
∴設直線AB的解析式為y=kx+b(k≠0),則
,
解得,
∴直線AB的解析式為:y=2x+5;
∵y>2,
∴2x+5>2,
解得:x>1.5,
∴當x>1.5時,y>2.
(3)∵點Q在x軸上,點P在直線AB上,以Q、P、A1、C1為頂點的四邊形是平行四邊形,
當A1C1為平行四邊形的邊時,
∴PQ=A1C1=2,
∵P點在直線y=2x+5上,
∴令y=2時,2x+5=2,解得x=1.5,
令y=2時,2x+5=2,解得x=3.5,
當A1C1為平行四邊形的對角線時,
∵A1C1的中點坐標為(3,2),
∴P的縱坐標為4,
代入y=2x+5得,4=2x+5,
解得x=0.5,
∴P(0.5,4),
故P為(1.5,2)或(3.5,2)或(0.5,4).
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,設D為銳角△ABC內一點,∠ADB=∠ACB+90°.
(1)求證:∠CAD+∠CBD=90°;
(2)如圖2,過點B作BE⊥BD,BE=BD,連接EC,若ACBD=ADBC,
①求證:△ACD∽△BCE;
②求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠現(xiàn)在平均每天比原計劃多生產 50 臺機器,現(xiàn)在生產 600 臺機器所需時間與原計劃生產 450 臺機器所需時間相同.
(1)現(xiàn)在平均每天生產多少臺機器;
(2)生產 3000 臺機器,現(xiàn)在比原計劃提前幾天完成.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,直線y=﹣x﹣1與x軸,y軸的交點分別為A、B,以x=﹣1為對稱軸的拋物線y=x2+bx+c與x軸分別交于點A、C,直線x=﹣1與x軸交于點D.
(1)求拋物線的解析式;
(2)在線段AB上是否存在一點P,使以A,D,P為頂點的三角形與△AOB相似?若存在,求出點P的坐標;如果不存在,請說明理由;
(3)若點Q在第三象限內,且tan∠AQD=2,線段CQ是否存在最小值,如果存在直接寫出最小值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,、分別是正方形的邊、上的點,,、相交于點.下列結論:;;與成中心對稱.其中,正確的結論有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時間x(分)之間的函數(shù)圖象如圖所示.
(1)求小張騎自行車的速度;
(2)求小張停留后再出發(fā)時y與x之間的函數(shù)表達式;
(3)求小張與小李相遇時x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4),
(1)將△ABC各頂點的橫坐標保持不變,縱坐標分別減5后得到△A1B1C1;
①請在圖中畫出△A1B1C1;
②求這個變換過程中線段AC所掃過的區(qū)域面積;
(2)將△ABC繞點(1,0)按逆時針方向旋轉90°后得到的△A2B2C2,請在圖中畫出△A2B2C2,并分別寫出△A2B2C2的頂點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com