【題目】如圖,∠A+B+C+D+E+F=

A.180°B.360°C.540°D.以上答案都不是

【答案】B

【解析】

根據(jù)三角形的內(nèi)角和等于180°,用∠AGB表示出∠A,∠B,用∠EMF表示出∠E,∠F,用∠CND表示出∠C,∠D,然后再根據(jù)對頂角相等的性質(zhì)解出它們的度數(shù)即可.

解:如圖,

∵三角形的內(nèi)角和等于180°,

∴∠A+B=180°-AGB,∠E+F=180°-EMF,∠C+D=180°-CND

∵對頂角相等,

∴∠AGB=MGN,∠EMF=GMN,∠CND=MNG

∵∠MGN+GMN+MNG=180°,

∴∠A+B+E+F+C+D

=180°-AGB+180°-EMF+180°-CND

=540°-(∠AGB+EMF+CND

=540°-180°

=360°

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廣告公司設(shè)計一幅周長為16米的矩形廣告牌,廣告設(shè)計費為每平方米2000元.設(shè)矩形一邊長為x,面積為S平方米.

(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)設(shè)計費能達(dá)到24000元嗎?為什么?

(3)當(dāng)x是多少米時,設(shè)計費最多?最多是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,BC=8cm,AC=6cm,點EBC的中點,動點PA點出發(fā),先以每秒2cm的速度沿AC運動,然后以1cm/s的速度沿CB運動.若設(shè)點P運動的時間是t秒,那么當(dāng)t=_______,APE的面積等于8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的布袋里有4個標(biāo)有1,2,3,4的小球,它們的形狀、大小完全相同.小明從布袋里隨機取出一個小球,記下數(shù)字為x,小紅在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點Q的坐標(biāo)(x,y).

(1)畫樹狀圖或列表,寫出點Q所有可能的坐標(biāo);

(2)小明和小紅約定做一個游戲,其規(guī)則為:若x、y滿足xy6則小明勝,若x、y滿足xy<6則小紅勝,這個游戲公平嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx(a≠0)過A(4,0),B(1,3)兩點,點C、B關(guān)于拋物線的對稱軸對稱,過點B作直線BHx軸,交x軸于點H.

(1)求拋物線的表達(dá)式;

(2)求點C的坐標(biāo),并求出ABC的面積;

(3)點P是拋物線上一動點,且位于第四象限,是否存在這樣的點P,使得ABP的面積為ABC面積的2倍?若存在,求出點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角△ABC中,AC10,SABC 25,∠BAC的平分線交BC于點D,點MN分別是ADAB上的動點,則BMMN的最小值是( )

A. 4 B. C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RTABC中,∠ACB=90°,∠B=35°,CDAB,垂足為點D,

1)求∠ACD的度數(shù);

2)找出圖中相等的角,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科技館是少年兒童節(jié)假日游玩的樂園.

如圖所示,圖中點的橫坐標(biāo)x表示科技館從8:30開門后經(jīng)過的時間(分鐘),縱坐標(biāo)y表示到達(dá)科技館的總?cè)藬?shù).圖中曲線對應(yīng)的函數(shù)解析式為y=,10:00之后來的游客較少可忽略不計.

(1)請寫出圖中曲線對應(yīng)的函數(shù)解析式;

(2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過684人,后來的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時,館外等待的游客可全部進入.請問館外游客最多等待多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店欲購進一批跳繩,若購進種跳繩根和種跳繩根,則共需元;若購進種跳繩根和種跳繩根,則共需元.

1)求兩種跳繩的單價各是多少?

2)若該商店準(zhǔn)備購進這兩種跳繩共根,且種跳繩的數(shù)量不少于跳繩總數(shù)量的.若每根種、種跳繩的售價分別為元、元,問:該商店應(yīng)如何進貨才可獲取最大利潤,并求出最大利潤.

查看答案和解析>>

同步練習(xí)冊答案