如圖,△ABC內(nèi)接于⊙O,AD⊥BC,OE⊥BC,OE=BC.
(1)求∠BAC的度數(shù);
(2)將△ACD沿AC折疊為△ACF,將△ABD沿AB折疊為△ABG,延長(zhǎng)FC和GB相交于點(diǎn)H;求證:四邊形AFHG是正方形;
(3)若BD=6,CD=4,求AD的長(zhǎng).

【答案】分析:(1)連接OB、OC,由垂徑定理知E是BC的中點(diǎn),而OE=BC,可判定△BOC是直角三角形,則∠BOC=90°,根據(jù)同弧所對(duì)的圓周角和圓心角的關(guān)系即可求得∠BAC的度數(shù);
(2)由折疊的性質(zhì)可得到的條件是:①AG=AD=AF,②∠GAF=∠GAD+∠DAF=2∠BAC=90°,且∠G=∠F=90°;由②可判定四邊形AGHF是矩形,聯(lián)立①的結(jié)論可證得四邊形AGHF是正方形;
(3)設(shè)AD=x,由折疊的性質(zhì)可得:AD=AF=x(即正方形的邊長(zhǎng)為x),BG=BD=6,CF=CD=4;進(jìn)而可用x表示出BH、HC的長(zhǎng),即可在Rt△BHC中,由勾股定理求得AD的長(zhǎng).
解答:(1)解:連接OB和OC;
∵OE⊥BC,∴BE=CE;
∵OE=BC,∴∠BOC=90°,∴∠BAC=45°;(2分)

(2)證明:∵AD⊥BC,∴∠ADB=∠ADC=90°;
由折疊可知,AG=AF=AD,∠AGH=∠AFH=90°,
∠BAG=∠BAD,∠CAF=∠CAD,(3分)
∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;
∴∠GAF=∠BAG+∠CAF+∠BAC=90°;
∴四邊形AFHG是正方形;(5分)

(3)解:由(2)得,∠BHC=90°,GH=HF=AD,GB=BD=6,CF=CD=4;
設(shè)AD的長(zhǎng)為x,則BH=GH-GB=x-6,CH=HF-CF=x-4.(7分)
在Rt△BCH中,BH2+CH2=BC2,∴(x-6)2+(x-4)2=102;
解得,x1=12,x2=-2(不合題意,舍去);
∴AD=12. (8分)
點(diǎn)評(píng):此題主要考查了垂徑定理、勾股定理、正方形的判定和性質(zhì)以及圖形的翻折變換等知識(shí),能夠根據(jù)折疊的性質(zhì)得到與所求相關(guān)的相等角和相等邊是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點(diǎn)D在A(yíng)B的延長(zhǎng)線(xiàn)上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線(xiàn),并說(shuō)明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長(zhǎng)交BC于點(diǎn)D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點(diǎn)D,求證:∠BAD=∠CAO.

查看答案和解析>>

同步練習(xí)冊(cè)答案