【題目】如圖,射線,分別交于點(diǎn),和點(diǎn),,且 已知半徑等于5, 的長度為__________

【答案】

【解析】

OOMABMONCDN,連接OCOP,求出∠AMO=CNO=90°AM=BM=CN=DN=4,由勾股定理求出OM=ON=3,證RtPMORtPNO,推出∠MPO=NPO,求出∠AOP=MPO,推出PA=OA=5,求出PM,根據(jù)勾股定理求出即可.

OOMABMONCDN,連接OCOP,

則∠AMO=CNO=90°,AM=BM=AB=×8=4,CN=DN=4,

OA=OC=5,

由勾股定理得:OM=ON=3

RtPMORtPNO

RtPMORtPNOHL),

∴∠MPO=NPO,

AOPC

∴∠AOP=NPO,

∴∠AOP=MPO,

PA=OA=5

PM=5+4=9,

RtPMO中,由勾股定理得:

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】伊利集團(tuán)是中國規(guī)模最大、產(chǎn)品線最全的乳制品企業(yè).綜合實(shí)踐小組的同學(xué)從網(wǎng)上搜集到如下一些伊利集團(tuán)近幾年的營業(yè)狀況的資料,其中圖12013-2018年伊利集團(tuán)營業(yè)收入及凈利潤情況統(tǒng)計(jì)圖,圖22018年伊利集團(tuán)各品類業(yè)務(wù)營業(yè)、收入比例情況統(tǒng)計(jì)圖(數(shù)據(jù)來源:公司財(cái)報(bào)、中商產(chǎn)業(yè)研究院)

綜合實(shí)踐小組的同學(xué)結(jié)合統(tǒng)計(jì)圖提出了如下問題,請你解答:

12018年,伊利集團(tuán)營收及凈利再次刷新行業(yè)記錄,穩(wěn)居亞洲乳業(yè)第一,這一年,伊利集團(tuán)實(shí)現(xiàn)營業(yè)收入    億元,凈利潤    億元.

2)求2018年伊利集團(tuán)“奶粉及奶制品”業(yè)務(wù)的營業(yè)收入(結(jié)果精確到億元)

3)在2013-2018年中,伊利集團(tuán)的凈利比上一年增長額最多的是    年;估計(jì)2019年伊利集團(tuán)的凈利潤將比上一年增長    億元,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)資源日趨豐富,更多人選擇在線自主學(xué)習(xí),在線學(xué)習(xí)方式有在線閱讀、在線聽課、在線答題、在線討論.濟(jì)川中學(xué)初二年級隨機(jī)抽取部分學(xué)生進(jìn)行你對哪類在線學(xué)習(xí)方式最感興趣的調(diào)查(每位同學(xué)只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息,解答下列問題:

1)補(bǔ)全條形統(tǒng)計(jì)圖;

2)求扇形統(tǒng)計(jì)圖中在線閱讀對應(yīng)的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場銷售某種品牌的空調(diào)和電風(fēng)扇:

1)已知購進(jìn)8臺空調(diào)和20臺電風(fēng)扇共需17400元,購進(jìn)10臺空調(diào)和30臺電風(fēng)扇共需22500元,求每臺空調(diào)和電風(fēng)扇的進(jìn)貨價(jià);

2)已知空調(diào)標(biāo)價(jià)為2500元/臺,電風(fēng)扇標(biāo)價(jià)為250元/臺.若商場購進(jìn)空調(diào)和電風(fēng)扇共60臺,并全部打八折出售,設(shè)其中空調(diào)的數(shù)量為a臺,商場通過銷售這批空調(diào)和電風(fēng)扇獲得的利潤為w元,求wa之間的函數(shù)關(guān)系式;

3)在(2)的條件下,若這批空調(diào)和電風(fēng)扇的進(jìn)貨價(jià)不超過45300元,商場通過銷售這批空調(diào)和電風(fēng)扇獲得的利潤又不低于6000元,問商場共有多少種不同的進(jìn)貨方案,哪種進(jìn)貨方案獲得的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤是160,花卉的平均每盆利潤是19調(diào)研發(fā)現(xiàn):

①盆景每增加1,盆景的平均每盆利潤減少2;每減少1,盆景的平均每盆利潤增加2;②花卉的平均每盆利潤始終不變.

小明計(jì)劃第二期培植盆景與花卉共100,設(shè)培植的盆景比第一期增加x,第二期盆景與花卉售完后的利潤分別為W1,W2(單位元)

(1)用含x的代數(shù)式分別表示W1,W2;

(2)當(dāng)x取何值時(shí),第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC、BD相交于點(diǎn)O,AB=5AC=6,AC的平行線DEBC的延長線于點(diǎn)E,則四邊形ACED的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年,日是母親節(jié),浩浩去花店買花送給母親,挑中了象征溫馨、母愛的康乃馨和象征高貴、尊敬的蘭花兩種花,已知康乃馨每支元,蘭花每支元,浩浩只有元,還想留著元購買卡片.希望購買花的支數(shù)為支,其中至少有一支是蘭花.浩浩一共有多少種可能的購買方案?列出所有方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,,點(diǎn)是弧上的任一點(diǎn),過點(diǎn)的切線交于點(diǎn).連接

1)求證:;

2)填空:①當(dāng)_____時(shí),四邊形是正方形;

②當(dāng)_____時(shí),四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個(gè)閉合時(shí)的夾子,圖2是該夾子的主視示意圖,夾子兩邊為AC,BD(點(diǎn)A與點(diǎn)B重合),點(diǎn)O是夾子轉(zhuǎn)軸位置,OEAC于點(diǎn)E,OFBD于點(diǎn)F,OE=OF=1cm,AC=BD=6cm CE=DF, CE:AE=2:3.按圖示方式用手指按夾子,夾子兩邊繞點(diǎn)O轉(zhuǎn)動

(1)當(dāng)E,F兩點(diǎn)的距離最大值時(shí),以點(diǎn)A,B,C,D為頂點(diǎn)的四邊形的周長是_____ cm.

(2)當(dāng)夾子的開口最大(點(diǎn)C與點(diǎn)D重合)時(shí),A,B兩點(diǎn)的距離為_____cm.

查看答案和解析>>

同步練習(xí)冊答案