【題目】如圖,在△ABC中,BD⊥AC于D.若∠A:∠ABC:∠ACB=3:4:5,E為線段BD上任一點(diǎn).
(1)試求∠ABD的度數(shù);
(2)求證:∠BEC>∠A.
【答案】(1)45°;(2)證明見(jiàn)解析.
【解析】
(1)依據(jù)三角形的內(nèi)角和是180°,可求∠A=45°,∠B=60°,∠C=75°.又BD⊥AC,所以∠ABD=45°.
(2)依據(jù)三角形的外角大于與它不相鄰的任一內(nèi)角,可證∠BEC>∠BDC>∠A,即∠BEC>∠A.
(1)∵∠A+∠ABC+∠ACB=180°,∠A:∠ABC:∠ACB=3:4:5,
∴∠A=45°,∠B=60°,∠C=75°,
∵BD⊥AC,
∴∠ADB=90°,
∴∠ABD=90°-∠A=45°;
(2)∵∠BEC是△CDE的外角,
∴∠BEC>∠BDC,
∵∠BDC是△ABD的外角,
∴∠BDC>∠A,
∴∠BEC>∠A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋(píng)果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格出售,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤(rùn)w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋(píng)果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,點(diǎn)E在AD邊上,連接BE、CE,EB平分∠AEC
(1)如圖1,判斷△BCE的形狀,并說(shuō)明理由;
(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)(2,-1),與軸交于點(diǎn)A,F點(diǎn)為(1,2).
(Ⅰ)求的值及A點(diǎn)的坐標(biāo);
(Ⅱ)將函數(shù)的圖象沿軸方向向上平移得到函數(shù),其圖象與軸交于點(diǎn)Q,且OQ=QF,求平移后的函數(shù)的解析式;
(Ⅲ)若點(diǎn)A關(guān)于的對(duì)稱點(diǎn)為K,請(qǐng)求出直線FK與軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=BC,∠ABC=90°.以AB為斜邊作等腰直角三角形ADB.點(diǎn)P是直線DB上一個(gè)動(dòng)點(diǎn),連接AP,作PE⊥AP交BC所在的直線于點(diǎn)E.
(1)如圖1,點(diǎn)P在BD的延長(zhǎng)線上,PE⊥EC,AD=1,直接寫(xiě)出PE的長(zhǎng);
(2)點(diǎn)P在線段BD上(不與B,D重合),依題意,將圖2補(bǔ)全,求證:PA=PE;
(3)點(diǎn)P在DB的延長(zhǎng)線上,依題意,將圖3補(bǔ)全,并判斷PA=PE是否仍然成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l:,過(guò)點(diǎn)M(1,0)作x軸的垂線交直線l于點(diǎn)N,過(guò)點(diǎn)N作直線l的垂線交x軸于點(diǎn)M1;過(guò)點(diǎn)M1作x軸的垂線交直線l于N1,過(guò)點(diǎn)N1作直線l的垂線交x軸于點(diǎn)M2,…;按此作法繼續(xù)下去,則點(diǎn)M5的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△BCE中,點(diǎn)A是邊BE上一點(diǎn),以AB為直徑的⊙O與CE相切于點(diǎn)D,AD∥OC,點(diǎn)F為OC與⊙O的交點(diǎn),連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,△ABO的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(2a,0)、B(0,﹣a),線段EF兩端點(diǎn)坐標(biāo)為E(﹣m,a+1),F(xiàn)(﹣m,1)(2a>m>a);直線l∥y軸交x軸于P(a,0),且線段EF與CD關(guān)于y軸對(duì)稱,線段CD與NM關(guān)于直線l對(duì)稱.
(1)求點(diǎn)N、M的坐標(biāo)(用含m、a的代數(shù)式表示);
(2)△ABO與△MFE通過(guò)平移能重合嗎?能與不能都要說(shuō)明其理由,若能請(qǐng)你說(shuō)出一個(gè)平移方案(平移的單位數(shù)用m、a表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象與直線y=x+1相交于點(diǎn)A(﹣1,m)和點(diǎn)B(n,5).
(1)求該二次函數(shù)的關(guān)系式;
(2)在給定的平面直角坐標(biāo)系中,畫(huà)出這兩個(gè)函數(shù)的大致圖象;
(3)結(jié)合圖象直接寫(xiě)出x2+bx+c>x+1時(shí)x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com