(2010•武漢模擬)如圖,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于點D,DE⊥AD交AB于點E,M為AE的中點,BF⊥BC交CM的延長線于點F,BD=4,CD=3.下列結(jié)論①∠AED=∠ADC;②=;③AC•BE=12;④3BF=4AC,其中結(jié)論正確的個數(shù)有( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,∠EAD=∠DAC;②易證△ADE∽△ACD,得DE:DA=DC:AC=3:AC,AC不一定等于4.③當(dāng)FC⊥AB時成立;④連接DM,可證DM∥BF∥AC,得FM:MC=BD:DC=4:3;易證△FMB∽△CMA,得比例線段求解.
解答:解:①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,
∵∠EAD=∠DAC,
∴∠AED=∠ADC.
故本選項正確;
②∵∠EAD=∠DAC,∠ADE=∠ACD=90°,
∴△ADE∽△ACD,得DE:DA=DC:AC=3:AC,但AC的值未知,
故不一定正確;
③由①知∠AED=∠ADC,
∴∠BED=∠BDA,
又∵∠DBE=∠ABD,
∴△BED∽△BDA,
∴DE:DA=BE:BD,由②知DE:DA=DC:AC,
∴BE:BD=DC:AC,
∴AC•BE=BD•DC=12.
故本選項正確;
④連接DM,
在Rt△ADE中,MD為斜邊AE的中線,
則DM=MA.
∴∠MDA=∠MAD=∠DAC,
∴DM∥BF∥AC,
由DM∥BF得FM:MC=BD:DC=4:3;
由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=4:3,
∴3BF=4AC.
故本選項正確.
綜上所述,①③④正確,共有3個.
故選C.
點評:此題重點考查相似三角形的判定和性質(zhì),綜合性強,有一定難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年山東省濟(jì)寧市曲阜市實驗中學(xué)九年級數(shù)學(xué)第一次摸底試卷(解析版) 題型:填空題

(2010•武漢模擬)如圖,直線y=kx+b經(jīng)過A(0,4)和B(-2,0)兩點,則不等式組0<kx+b≤-2x的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省武漢市五月調(diào)考九年級數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•武漢模擬)如圖,直線y=kx+b經(jīng)過A(0,4)和B(-2,0)兩點,則不等式組0<kx+b≤-2x的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省武漢市四月調(diào)考九年級數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•武漢模擬)在平面直角坐標(biāo)系中,直線y=kx向右平移2個單位后,剛好經(jīng)過點(0,4),則不等式2x>kx+4的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省武漢市教育科學(xué)研究院命制中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2010•武漢模擬)如圖,直線y=kx+b經(jīng)過A(0,4)和B(-2,0)兩點,則不等式組0<kx+b≤-2x的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省武漢市部分學(xué)校3月九年級聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•武漢模擬)如圖1,已知直線y=x+2與x軸交于點A,交y軸于C、拋物線y=ax2+4ax+b經(jīng)過A、C兩點,拋物線交x軸于另一點B.
(1)求拋物線的解析式;
(2)點Q在拋物線上,且有△AQC和△BQC面積相等,求點Q的坐標(biāo);
(3)如圖2,點P為△AOC外接圓上的中點,直線PC交x軸于D,∠EDF=∠ACO.當(dāng)∠EDF繞D旋轉(zhuǎn)時,DE交AC于M,DF交y軸負(fù)半軸于N、問CN-CM的值是否發(fā)生變化?若不變,求出其值;若變化,求出變化范圍.

查看答案和解析>>

同步練習(xí)冊答案