【題目】在平面直角坐標(biāo)系中,已知直線y=﹣x+3x軸、y軸分別交于AB兩點(diǎn),點(diǎn)C在線段OB上,把△ABC沿直線AC折疊,使點(diǎn)B剛好落在x軸上,則點(diǎn)C的坐標(biāo)是( 。

A.0,﹣B.0,C.0,3D.0,4

【答案】B

【解析】

設(shè)C0n),過(guò)CCDABD,先求出A,B的坐標(biāo),分別為(4,0),(0,3),得到AB的長(zhǎng),再根據(jù)折疊的性質(zhì)得到AC平分∠OAB,得到CDCOn,DAOA4,則DB541,BC3n,在RtBCD中,利用勾股定理得到n的方程,解方程求出n即可.

解:設(shè)C0,n),過(guò)CCD⊥ABD,如圖,

對(duì)于直線y=﹣x+3,

當(dāng)x0,得y3

當(dāng)y0,x4

∴A4,0),B0,3),即OA4,OB3

∴AB5,

坐標(biāo)平面沿直線AC折疊,使點(diǎn)B剛好落在x軸上,

∴AC平分∠OAB

∴CDCOn,則BC3n

∴DAOA4,

∴DB541,

Rt△BCD中,DC2+BD2BC2,

∴n2+12=(3n2,解得n,

點(diǎn)C的坐標(biāo)為(0,).

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)是我國(guó)的傳統(tǒng)節(jié)日,人們素有吃粽子的習(xí)俗,某商場(chǎng)在端午節(jié)來(lái)臨之際用3000元購(gòu)進(jìn)兩種粽子1100個(gè),購(gòu)買(mǎi)種粽子與購(gòu)買(mǎi)種粽子的費(fèi)用相同,已知粽子的單價(jià)是種粽子單價(jià)的1.2.

1)求、兩種粽子的單價(jià)各是多少?

2)若計(jì)劃用不超過(guò)7000元的資金再次購(gòu)買(mǎi)、兩種粽子共2600個(gè),已知、兩種粽子的進(jìn)價(jià)不變,求中粽子最多能購(gòu)進(jìn)多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四川雅安發(fā)生地震后,某校學(xué)生會(huì)向全校1900名學(xué)生發(fā)起了心系雅安捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列是問(wèn)題:

(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中m的值是 ;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛貨車(chē)從百貨大樓出發(fā)負(fù)責(zé)送貨,向東走了 5 千米到達(dá)小明家,繼續(xù)向東走了 1.5 千米到達(dá)小紅家,然后向西走了 9.5 千米到達(dá)小剛家,最后返回百貨大樓.

(1)以百貨大樓為原點(diǎn),向東為正方向,1 個(gè)單位長(zhǎng)度表示 1 千米,請(qǐng)你在數(shù)軸上標(biāo)出小明、小紅、小剛家的位置.(小明家用點(diǎn) A 表示,小紅家用點(diǎn) B 表示,小剛家用點(diǎn) C 表示)

(2)小明家與小剛家相距多遠(yuǎn)?

(3)若貨車(chē)每千米耗油 0.6 升,那么這輛貨車(chē)此次送貨共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“雙劍合璧,天下無(wú)敵”,其意思是指兩個(gè)人合在一起,取長(zhǎng)補(bǔ)短,威力無(wú)比.在二次根式中也常有這種相輔相成的“對(duì)子”,如:,,它們的積中不含根號(hào),我們說(shuō)這兩個(gè)二次根式是互為有理化因式,其中一個(gè)是另一個(gè)的有理化因式,于是,二次根式除法可以這樣解:

像這樣通過(guò)分子、分母同乘一個(gè)式子把分母中的根號(hào)化去的方法,叫做分母有理化.

解決下列問(wèn)題:

1)將分母有理化得    的有理化因式是    ;

2)化簡(jiǎn):=    

3)化簡(jiǎn):……+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為緩解交通擁堵,某區(qū)擬計(jì)劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面與通道平行),通道水平寬度8米, ,通道斜面 的長(zhǎng)為6米,通道斜面的坡度.

(1)求通道斜面的長(zhǎng)為 ;

(2)為增加市民行走的舒適度,擬將設(shè)計(jì)圖中的通道斜面的坡度變緩,修改后的通道斜面的坡角為30°,求此時(shí)的長(zhǎng).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】冬天來(lái)了,曬衣服成了頭疼的事情,聰明的小華想到一個(gè)好辦法,在家后院地面(BD)上立兩根等長(zhǎng)的立柱AB、CD(均與地面垂直),并在立柱之間懸掛一根繩子.繩子的形狀近似成了拋物線,如圖1,已知BD=8米,繩子最低點(diǎn)離地面的距離為1米.

(1)求立柱AB的長(zhǎng)度;

(2)由于掛的衣服比較多,為了防止衣服碰到地面,小華用一根垂直于地面的立柱MN撐起繩子(如圖2),MN的長(zhǎng)度為1.85米,通過(guò)調(diào)整MN的位置,使左邊拋物線F1對(duì)應(yīng)函數(shù)的二次項(xiàng)系數(shù)為,頂點(diǎn)離地面1.6米,求MN離AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:小剛站在河邊的點(diǎn)處,在河的對(duì)面(小剛的正北方向)的處有一電線塔,他想知道電線塔離他有多遠(yuǎn),于是他向正西方向走了30步到達(dá)一棵樹(shù)處,接著再向前走了30步到達(dá)處,然后他左轉(zhuǎn)直行,當(dāng)小剛看到電線塔、樹(shù)與自己現(xiàn)處的位置在一條直線時(shí),他共走了140步.

(1)根據(jù)題意,畫(huà)出示意圖;

(2)如果小剛一步大約50厘米,估計(jì)小剛在點(diǎn)處時(shí)他與電線塔的距離,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,且OA=OB.

(1)求證:四邊形ABCD是矩形;

(2)若AB=6,AOB=120°,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案